Once again, it’s time to put our thinking caps on and delve even deeper into our studies of local area networks, as part of the Cisco Certified Network Associate’s curriculum on the topic. Can you tell us even more about how these LAN networks actually operate? Take the quiz and we’ll find out!
The no shutdown command has not been issued on the FastEthernet 0/0 interface.
Both of the directly connected routes that are shown will share the same physical interface of the router.
A routing protocol must be configured on the network in order for the inter-VLAN routing to be successful.
Inter-VLAN routing between hosts on the 172.17.10.0/24 and 172.17.30.0/24 networks is successful on this network.
Hosts in this network must be configured with the IP address that is assigned to the router physical interface as their default gateway.
Rate this question:
When router-on-a-stick inter-VLAN routing is in use, each subinterface has a separate MAC address to send in response to ARP requests.
When VLANs are in use, the switch responds to ARP requests with the MAC address of the port to which the PC is connected.
When router-on-a-stick inter-VLAN routing is in use, the router returns the MAC address of the physical interface in response to ARP requests.
When traditional inter-VLAN routing is in use, devices on all VLANs use the same physical router interface as their source of proxy ARP responses.
Rate this question:
A network with more than 100 subnetworks
A network with a limited number of VLANs
A network with experienced support personnel
A network using a router with one LAN interface
Rate this question:
R1 interface F0/1 has not been configured for subinterface operation.
S1 interface F0/6 needs to be configured for operation in VLAN10.
S1 interface F0/8 is in the wrong VLAN.
S1 port F0/6 is not in VLAN10.
Rate this question:
Traditional routing is only able to use a single switch interface. Router-on-a-stick can use multiple switch interfaces.
Traditional routing requires a routing protocol. Router-on-a-stick only needs to route directly connected networks.
Traditional routing uses one port per logical network. Router-on-a-stick uses subinterfaces to connect multiple logical networks to a single router port.
Traditional routing uses multiple paths to the router and therefore requires STP. Router-on-a-stick does not provide multiple connections and therefore eliminates the need for STP.
Rate this question:
One subinterface per VLAN
One physical interface for each subinterface
One IP network or subnetwork for each subinterface
A management domain for each subinterface
A compatible trunking protocol encapsulation for each subinterface
Rate this question:
PC1 and PC3 are not in the same VLAN.
The PC3 network address configuration is incorrect.
The S1 interface F0/11 should be assigned to VLAN30.
The F0/0 and F0/1 interfaces on R1 must be configured as trunks.
Rate this question:
Port 0/4 is not active.
Port 0/4 is not a member of VLAN1.
Port 0/4 is configured in access mode.
Port 0/4 is using the wrong trunking protocol.
Rate this question:
R1 is configured for router-on-a-stick, but S1 is not configured for trunking.
R1 does not have the VLANs entered in the VLAN database.
Spanning Tree Protocol is blocking port Fa0/0 on R1.
The subinterfaces on R1 have not been brought up with the no shutdown command yet.
Rate this question:
This design will not scale easily.
The router merges the VLANs into a single broadcast domain.
This design uses more switch and router ports than are necessary.
This design requires the use of the ISL or 802.1q protocol on the links between the switch and the router.
If the physical interfaces between the switch and router are operational, the devices on the different VLANs can communicate through the router.
Rate this question:
Subinterfaces have no contention for bandwidth
More switch ports required than in traditional inter-VLAN routing
Fewer router ports required than in traditional inter-VLAN routing
Simpler Layer 3 troubleshooting than with traditional inter-VLAN routing
Less complex physical connection than in traditional inter-VLAN routing
Rate this question:
The router will forward the packet out interface FastEthernet 0/1.1 tagged for VLAN 10.
The router will forward the packet out interface FastEthernet 0/1.2 tagged for VLAN 60.
The router will forward the packet out interface FastEthernet 0/1.3 tagged for VLAN 120.
The router will not process the packet since the source and destination are on the same subnet.
The router will drop the packet since no network that includes the source address is attached to the router.
Rate this question:
The command applies VLAN 10 to router interface fa0/0.
The command is used in the configuration of router-on-a-stick inter-VLAN routing.
The command configures a subinterface.
The command configures interface fa0/0 as a trunk link.
Because the IP address is applied to the physical interface, the command does not include an IP address.
Rate this question:
Configure the physical interfaces on the router and enable a routing protocol.
Create the VLANs on the router and define the port membership assignments on the switch.
Create the VLANs on the switch to include port membership assignment and enable a routing protocol on the router.
Create the VLANs on the switch to include port membership assignment and configure subinterfaces on the router matching the VLANs.
Rate this question:
Implement a router-on-a-stick configuration.
Add a second router to handle the inter-VLAN traffic.
Use a hub to connect the four VLANS with a FastEthernet interface on the router.
Interconnect the VLANs via the two additional FastEthernet interfaces.
Rate this question:
The physical interface must have an IP address configured.
The subinterface numbers must match the VLAN ID number.
The no shutdown command must be given on each subinterface.
The IP address of each subinterface must be the default gateway address for each VLAN subnet.
Rate this question:
Incoming traffic that has a VLAN ID of 2 is processed by subinterface fa0/0.2.
Incoming traffic with VLAN ID 0 is processed by interface fa0/0.
Subinterfaces use unique MAC addresses by adding the 802.1Q VLAN ID to the hardware address.
Traffic inbound on this router is processed by different subinterfaces, depending on the VLAN from which the traffic originated.
Both subinterfaces remain up with line protocol up, even if fa0/0 line protocol is down.
Rate this question:
Configure ports 0/13 to 0/16 with the appropriate IP addresses to perform routing between VLANs.
Add a router to the topology and configure one FastEthernet interface on the router with multiple subinterfaces for VLANs 1, 10, 20, and 30.
Obtain a router with multiple LAN interfaces and configure each interface for a separate subnet, thereby allowing communication between VLANs.
Obtain a Layer 3 switch and configure a trunk link between the switch and router, and configure the router physical interface with an IP address on the native VLAN.
Rate this question:
PC1 and R1 interface F0/0.1 are on different subnets.
The encapsulation is missing on the R1 interface F0/0.
An IP address has not been assigned to the R1 physical interface.
The encapsulation command on the R1 F0/0.3 interface is incorrect.
Rate this question:
Quiz Review Timeline (Updated): Mar 21, 2023 +
Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.
Wait!
Here's an interesting quiz for you.