Ch 11 Plyometrics In Rehabilitation

22 Questions | Total Attempts: 73

SettingsSettingsSettings
Ch 11 Plyometrics In Rehabilitation - Quiz

Questions and Answers
  • 1. 
    Quick powerful movement involving ______ muscle and activating stretch-shortening cycle for stronger concentric contraction
    • A. 

      Pre-stretching

    • B. 

      Post-stretching

  • 2. 
    Goal is to _____ amount of time between _____loading contraction and _____force producing contraction
    • A. 

      Decrease, eccentric, concentric

    • B. 

      Increase, eccentric, concentric

    • C. 

      Decrease, concentric, eccentric

    • D. 

      Increase, concentric, eccentric

  • 3. 
    Usually the focal point of motor control
    • A. 

      Contractile Component

    • B. 

      Series Elastic Component

    • C. 

      Parallel Elastic Component

  • 4. 
    Play an important role in providing stability and integrity to the individual fibers when a muscle is lengthened.
    • A. 

      Contractile Component

    • B. 

      Series Elastic Component

    • C. 

      Parallel Elastic Component

  • 5. 
    Concentric contraction
    • A. 

      Force transferred externally through SEC

    • B. 

      SEC lengthens and contributes to overall force output

    • C. 

      Force output = CC + SEC

  • 6. 
    Eccentric contraction
    • A. 

      Force transferred externally through SEC

    • B. 

      SEC lengthens and contributes to overall force output

    • C. 

      Force output = CC + SEC

  • 7. 
    Proprioceptive stretch reflex
    • A. 

      Mechanoreceptors detect stretch resulting in alterations in muscle tone, motor execution and kinesthetic awareness

    • B. 

      Muscle spindle response is graded by the rate of stretch

    • C. 

      Rapid loading = greater firing frequency = greater reflexive contraction

    • D. 

      During eccentric loading, muscle tension increases, triggering golgi tendon organ to initiate reduction in muscle excitation

    • E. 

      While muscle spindle and GTO oppose each other – both contribute to increased force production

    • F. 

      Length is proportional to amount of stretching force applied

    • G. 

      Absolute strength of fiber

    • H. 

      Increased force production is dependent on transition from eccentric to concentric contraction

  • 8. 
    Degree of Muscle Fiber Elongation
    • A. 

      Mechanoreceptors detect stretch resulting in alterations in muscle tone, motor execution and kinesthetic awareness

    • B. 

      Muscle spindle response is graded by the rate of stretch

    • C. 

      Rapid loading = greater firing frequency = greater reflexive contraction

    • D. 

      During eccentric loading, muscle tension increases, triggering golgi tendon organ to initiate reduction in muscle excitation

    • E. 

      While muscle spindle and GTO oppose each other – both contribute to increased force production

    • F. 

      Length is proportional to amount of stretching force applied

    • G. 

      Absolute strength of fiber

    • H. 

      Increased force production is dependent on transition from eccentric to concentric contraction

  • 9. 
    Force production
    • A. 

      Mechanoreceptors detect stretch resulting in alterations in muscle tone, motor execution and kinesthetic awareness

    • B. 

      Muscle spindle response is graded by the rate of stretch

    • C. 

      Rapid loading = greater firing frequency = greater reflexive contraction

    • D. 

      During eccentric loading, muscle tension increases, triggering golgi tendon organ to initiate reduction in muscle excitation

    • E. 

      While muscle spindle and GTO oppose each other – both contribute to increased force production

    • F. 

      Length is proportional to amount of stretching force applied

    • G. 

      Absolute strength of fiber

    • H. 

      Increased force production is dependent on transition from eccentric to concentric contraction

  • 10. 
    Plyometric Prerequisites -Should identify potential contraindications prior to initiation of program --Evaluation and functional tests -Require sound lower quarter mechanics --Stable base -Testing allows evaluation of base strength --Ensure appropriate stability -Eccentric strength is critical --Closed chain stability training may be necessary prior to engagement in program -Principle holds true for upper and lower extremity
    • A. 

      Biomechanical Evaluation

    • B. 

      Stability Testing

    • C. 

      Dynamic Movement Testing

    • D. 

      Flexibility

  • 11. 
    Plyometric Prerequisites -Static stability --Ability to stabilize and control body --Postural stability --Centers on single leg strength and stability -Dynamic stability --Satisfactory static stability --Assess eccentric abilities --Stabilization jumping
    • A. 

      Biomechanical Evaluation

    • B. 

      Stability Testing

    • C. 

      Dynamic Movement Testing

    • D. 

      Flexibility

  • 12. 
    Plyometric Prerequisites -Assess ability to produce explosive coordinated movement --Vertical or single leg jumping --Medicine ball toss
    • A. 

      Biomechanical Evaluation

    • B. 

      Stability Testing

    • C. 

      Dynamic Movement Testing

    • D. 

      Flexibility

  • 13. 
    Plyometric Prerequisites -Requires general and specific flexibility -Program should begin with general warm-up and flexibility routine --Static and short dynamic stretching techniques -Ability to demonstrate static and dynamic control --Begin with single leg squats and low intensity in place plyometrics --Progress in slow deliberate fashion --Move to moderate intensity plyometrics --Advanced athletes with strong background will be able to perform ballistic-reactive drills
    • A. 

      Biomechanical Evaluation

    • B. 

      Stability Testing

    • C. 

      Dynamic Movement Testing

    • D. 

      Flexibility

  • 14. 
    Plyometric Program Design -Horizontal movement is less stressful than vertical -Dependent on weight of athlete and technical proficiency
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 15. 
    Plyometric Program Design -Heavier athlete = greater training demand
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 16. 
    Plyometric Program Design -Increasing speed of particular activity increases the demands being placed on the athlete
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 17. 
    Plyometric Program Design -Training demand is greatly increased by externally loading athlete -Should not slow speed of movement
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 18. 
    Plyometric Program Design -Amount of effort exerted -Altered by activity performed (double  single leg) -Progress from simple to complex -Addition of external weight or increasing height
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 19. 
    Plyometric Program Design -Total amount of work performed -Total number of foot contacts --Varies inversely with intensity of exercise --Beginner = 75-100 (low intensity) --Advanced = 200-250 (low to moderate intensity)
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 20. 
    Plyometric Program Design -Number of times exercise session is performed during a training cycle -Not known for plyometrics -Recommend 48-72 hours between sessions -Intensity dependent
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 21. 
    Plyometric Program Design -Number of years athlete has been in formal training -Younger ages → training demand should be kept low
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

  • 22. 
    Plyometric Program Design -Time between sets -Power vs. Endurance --Power 1:3 or 1:4 ratio --Endurance 1:1 or 1:2 -Emphasize eccentric loading and amortization
    • A. 

      Direction of Body Movement

    • B. 

      Weight of Athlete

    • C. 

      Speed of Execution

    • D. 

      External Load

    • E. 

      Intensity

    • F. 

      Volume

    • G. 

      Frequency

    • H. 

      Training Age

    • I. 

      Recovery

Back to Top Back to top