In the field of mathematics, magic hypercubes are k-dimensional conceptions of magic squares, magic cubes, and magic tesseracts that increase their dimensions. Now, let's see what you know about magic hypercubes by taking this short, intelligent quiz.
Mk(n)+2
Mk(n)+1
Mk(n)
Mk(n)-1
Marian Trenkler
John Hendricks
James Stoner
Kathleen Ollerenshaw
Pathfinders
Digit changing
Reflection
Aspect
NH~R perm(0..n+2); R = ∑n-1 ((reflect(k)) ? 2k : 0) ; perm(0..n-1) a permutation of 0..n-1
NH~R perm(0..n+1); R = ∑n-1 ((reflect(k)) ? 2k : 0) ; perm(0..n-1) a permutation of 0..n-1
NH~R perm(0..n-1); R = ∑n-1 ((reflect(k)) ? 2k : 0) ; perm(0..n-1) a permutation of 0..n-1
NH~R perm(0..n-2); R = ∑n-1 ((reflect(k)) ? 2k : 0) ; perm(0..n-1) a permutation of 0..n-1
Monogonal permutation
Digitchanging
Component permutation
KnightJump construction
LP = ( ∑n-2 LP x + LP ) % m
LP = ( ∑n+2 LP x + LP ) % m
LP = ( ∑n+1 LP x + LP ) % m
LP = ( ∑n-1 LP x + LP ) % m
Dynamic numbering
Monogonal permutation
Digitchanging
Pathfinders
C. Planck
Marian Trenkler
Samuel Walker
J. R. Hendricks
Faulhaber's formula and divide it by mn-1
Faulhaber's formula and divide it by mn-2
Faulhaber's formula and divide it by mn+1
Faulhaber's formula and divide it by mn+2
Faulhaber magic hypercubes
Nasik magic hypercubes
Marian magic hypercubes
Planck magic hypercubes
Wait!
Here's an interesting quiz for you.