1.
If A $ B = A * B - ( A + B), what is 3 $ (2 $ 1)?
A. 
B. 
C. 
D. 
E. 
2.
How many numbers less than 1000 are divisble by 3?
A. 
B. 
C. 
D. 
E. 
3.
If a^b = c^d, which of the following is not necessarily true?
A. 
B. 
C. 
D. 
E. 
4.
Which of the following lines does not intersect y = 5 x + 2?
A. 
B. 
C. 
D. 
E. 
5.
A regular polygon has 9 sides. What is the degree measure of the angle, within the polygon, between any two sides?
A. 
B. 
C. 
D. 
E. 
6.
A cubic box, X, has sides of length n. Another cubic box, Y, has sides of length 2n. How many boxes X could fit into a single box Y?
A. 
B. 
C. 
D. 
E. 
7.
A number is called "round" if it contains at least one zero as a digit. How many three-digit numbers are "round?"
A. 
B. 
C. 
D. 
E. 
8.
How many ways can Pete, Mary, Sue, and Joe stand in a line if Joe and Sue cannot stand next to each other?
A. 
B. 
C. 
D. 
E. 
9.
A square, X, has sides of length n. Another square, Y, has sides of length 1.5n. How many X can fit into a single Y?
A. 
B. 
C. 
D. 
E. 
10.
A triangle has sides of length 7, 11, and X. Which of the following cannot be X?
A. 
B. 
C. 
D. 
E. 
11.
If |a| < |b|, and a > b, which of the following is necessarily true?
A. 
B. 
C. 
D. 
E. 
12.
Six children sit at a circular table. In how many orders can they sit at the table?
A. 
B. 
C. 
D. 
E. 
13.
If a two-sided coin is flipped three times, what is the probability that at least one head will show up?
A. 
B. 
C. 
D. 
E. 
14.
If m & n = (m + n)^(m - n), what is 2 & (2 & 2)?
A. 
B. 
C. 
D. 
E. 
15.
Which of the following cannot be formed from any combination of two pennies, three nickles, one dime, and two quarters?
A. 
B. 
C. 
D. 
E. 
16.
A three-digit number is called "big" if any two of its digits are equal. How many three-digit numbers are "big?"
A. 
B. 
C. 
D. 
E. 
17.
If 2 ^ (4x + 3) = 4 ^ (x - 1), what is x?
A. 
B. 
C. 
D. 
E. 
18.
Which of the following values of x is not in the domain of the function y = x / (x^2-2x+1)
A. 
B. 
C. 
D. 
E. 
19.
If a + b = y, what is a^2 + 2ab + b^2?
A. 
B. 
C. 
D. 
E. 
20.
The number 100 has two trailing zeros. How many trailing zeros does 100! have?
A. 
B. 
C. 
D. 
E. 
21.
Which of the following statements is always true?
A. 
|(a+b)^2| < |a^2| + |b^2|
B. 
C. 
D. 
E. 
22.
In physics, force = mass * acceleration. Suppose you have an original force F and new force G in which the mass is increased by a factor of two and the acceleration is increased by a factor of four. What is the ratio of G:F?
A. 
B. 
C. 
D. 
E. 
23.
If a^2 = b^2, which of the following is/are always true?
I. a = b
II. |a| = |b|
III. |a - b| = 0
A. 
B. 
C. 
D. 
E. 
24.
If (a-b)^2 = (a+b)^2, what is the value of ab?
A. 
B. 
C. 
D. 
E.