Could You Pass This Toughest SAT Math Practice Questions Test? Trivia Quiz

43 Questions | Total Attempts: 8003

SettingsSettingsSettings
Please wait...
Could You Pass This Toughest SAT Math Practice Questions Test? Trivia Quiz

SAT Math practice questions: This is an extensive, 50 SAT Math practice question quiz that is comprehensive over the subjects of algebraic manipulation, absolute value, inequalities, counting principles, logical reasoning, probability, and simple word problems. It is modelled on actual SAT Math section questions. So, let's try out the quiz. All the best!


Questions and Answers
  • 1. 
    If (x^2 * y) / (2z) = 2x, what is y in terms of x and z if x, y, and z are non-zero real numbers?
    • A. 

      X*z

    • B. 

      X^2*z

    • C. 

      (2x^2)/z

    • D. 

      (4z)/x

    • E. 

      (4*z^2)/(3*x^2)

  • 2. 
    A number is given as 3513N, where N is a positive integer that fills in the units digit. Which of the following values of N would result in 3513N being a multiple of 9?
    • A. 

      3

    • B. 

      4

    • C. 

      5

    • D. 

      6

    • E. 

      7

  • 3. 
    X $$ Y is defined as (X + Y)*(X - Y). Which of the following represents X^2 $$ Y^2
    • A. 

      X^2 + 2XY + Y^2

    • B. 

      X^4 - Y^4

    • C. 

      (X-Y)^3

    • D. 

      X^4 + 4X^3 + 2XY + Y^3

    • E. 

      X^2 - Y^2

  • 4. 
    Which of the following number is in the domain of f(x) = squareroot(x-2)/(x-7)
    • A. 

      0

    • B. 

      1

    • C. 

      1.5

    • D. 

      2

    • E. 

      7

  • 5. 
    If |x| = |y|, which of the following is necessarily true?
    • A. 

      X = y

    • B. 

      X = -y

    • C. 

      X + y = 0

    • D. 

      X - y = 0

    • E. 

      |x| - |y| = 0

  • 6. 
    Let X be the number of prime numbers on [1,10]. Let Y be the number of composite numbers on [1,10]. What is X+Y?
    • A. 

      6

    • B. 

      7

    • C. 

      8

    • D. 

      9

    • E. 

      10

  • 7. 
    Solve for x: 2x + 3 = 4x - 3
    • A. 

      0

    • B. 

      1

    • C. 

      3

    • D. 

      5

    • E. 

      7

  • 8. 
    If a @ b = 2(a + |b|), what is the value of 2 @ (-2 @ -1)?
    • A. 

      -8

    • B. 

      4

    • C. 

      0

    • D. 

      4

    • E. 

      8

  • 9. 
    John is 4 years older than Marie. In ten years, he will be twice as old as Marie. How old is Marie now?
    • A. 

      6

    • B. 

      8

    • C. 

      10

    • D. 

      12

    • E. 

      14

  • 10. 
    Let f(x) = x^2 - 2x. What is the value of f(2)?
    • A. 

      0

    • B. 

      2

    • C. 

      4

    • D. 

      8

    • E. 

      16

  • 11. 
    Which of the following is not a true statement?
    • A. 

      Every even number is divisible by two

    • B. 

      Every number divisible by two is an even number

    • C. 

      Every number not divisible by two is not odd

    • D. 

      Every number that is odd is not divisible by two

    • E. 

      Every number not divisible by two is composite

  • 12. 
    If f(x - 3) = g(x + 3), what does f(x) equal?
    • A. 

      3

    • B. 

      G(3)

    • C. 

      G(x)

    • D. 

      G(x+3)

    • E. 

      G(x+6)

  • 13. 
    If |x| = |y| and |x| = z, which of the following is always true?
    • A. 

      Z = |x| + |y|

    • B. 

      Z = |y|

    • C. 

      |z| = |y|

    • D. 

      Z = 0

    • E. 

      Z < 0

  • 14. 
    If x/y = z^2 and y/(xz) = z, and x, y, and z are not equal to 0, which of the following must be true?
    • A. 

      |x| = |y|

    • B. 

      Y = z

    • C. 

      X = z

    • D. 

      Z = x - y

    • E. 

      Y = x - z

  • 15. 
    (5 * 5 + 3) / 2 + 7 / 7 = ?
    • A. 

      1

    • B. 

      7

    • C. 

      14

    • D. 

      15

    • E. 

      35

  • 16. 
    How many ways can four students sit around a circular table?
    • A. 

      2

    • B. 

      4

    • C. 

      6

    • D. 

      8

    • E. 

      24

  • 17. 
    Solve for x: 2^(x+4) = 4^(x-2)
    • A. 

      0

    • B. 

      1

    • C. 

      4

    • D. 

      6

    • E. 

      8

  • 18. 
    A set of integers includes: 44, 66, 88, and x. If the mean of the scores is 80, what is x?
    • A. 

      12

    • B. 

      104

    • C. 

      120

    • D. 

      122

    • E. 

      200

  • 19. 
    John is older than Maria. Maria is younger than Sue. Terry is the oldest of the four of them. Who is the youngest?
    • A. 

      John

    • B. 

      Maria

    • C. 

      Sue

    • D. 

      Terry

    • E. 

      They are all the same age

  • 20. 
    If y = x^2 + 3, at how many points does y=0?
    • A. 

      0

    • B. 

      1

    • C. 

      2

    • D. 

      3

    • E. 

      Infinitely many

  • 21. 
    If the length of the sides of a cube is tripled, by what factor is the volume of the cube increased?
    • A. 

      3

    • B. 

      6

    • C. 

      9

    • D. 

      15

    • E. 

      27

  • 22. 
    If x = y, which of the follow is necessarily true?
    • A. 

      X^2 = y^2

    • B. 

      |x| = y

    • C. 

      |y| = x

    • D. 

      X^2 = y

    • E. 

      Y^2 = x

  • 23. 
    If f(x) = g(x) + h(x), which of the following is not always true for all f, g, and h that are defined at x?
    • A. 

      F(x) - g(x) = h(x)

    • B. 

      2*f(x) = 2*g(x) + 2*h(x)

    • C. 

      F( f(x) ) = f ( g(x) ) + f( h(x) )

    • D. 

      F(x) - g(x) - h(x) = 0

    • E. 

      F(x)/2 = g(x)/2 + h(x)/2

  • 24. 
    Which of the following will be equal to the 1 times the sign (positive or negative) of x?
    • A. 

      |x|

    • B. 

      X

    • C. 

      X/x

    • D. 

      |x|/x

    • E. 

      |x|/|x|

  • 25. 
    A fair coin is flipped three times. What is the chance that no head will appear?
    • A. 

      1/8

    • B. 

      1/4

    • C. 

      1/3

    • D. 

      1/2

    • E. 

      0

Back to Top Back to top