# Latihan Matematika Pts Kelas 8 Semester 2

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
| By Rindah
R
Rindah
Community Contributor
Quizzes Created: 34 | Total Attempts: 61,210
Questions: 20 | Attempts: 1,596

Settings

.

• 1.

• A.

A

• B.

B

• C.

C

• D.

D

D. D
• 2.

• A.

A

• B.

B

• C.

C

• D.

D

B. B
• 3.

• A.

A

• B.

B

• C.

C

• D.

D

A. A
• 4.

• A.

A

• B.

B

• C.

C

• D.

D

A. A
• 5.

• A.

A

• B.

B

• C.

C

• D.

D

B. B
• 6.

### Luas alas suatu prisma yang berbentuk persegi adalah 36 cm2. Jika tinggi prisma 20 cm, luas seluruh sisi prisma adalah... cm2.

• A.

280

• B.

552

• C.

980

• D.

1020

B. 552
Explanation
The surface area of a prism consists of the sum of the areas of all its faces. In this case, the base of the prism is a square with an area of 36 cm^2. Since a square has all sides equal, we can find the length of one side by taking the square root of the area, which is 6 cm. The surface area of the four sides of the prism is equal to the perimeter of the base multiplied by the height, which is 4 times the side length (4 * 6 cm) multiplied by the height of 20 cm, resulting in 480 cm^2. Adding the area of the two bases (2 * 36 cm^2), the total surface area of the prism is 552 cm^2.

Rate this question:

• 7.

### Luas daerah yang diarsir dari gambar di samping adalah ….

• A.

616 cm2

• B.

462 cm2

• C.

308 cm2

• D.

154 cm2

D. 154 cm2
Explanation
The correct answer is 154 cm2. This is because the area that is shaded in the given figure is a square with side length 7 cm. The formula for finding the area of a square is side length squared, so the area of this square is 7 cm * 7 cm = 49 cm2. Since there are 4 smaller squares within the larger square, the shaded area is 4 * 49 cm2 = 196 cm2. However, only half of each smaller square is shaded, so the final shaded area is 196 cm2 / 2 = 98 cm2. Therefore, the correct answer is 154 cm2.

Rate this question:

• 8.

• A.

A

• B.

B

• C.

C

• D.

D

A. A
• 9.

### Luas seluruh permukaan sebuah kubus adalah 150 cm2. Volume kubus tersebut adalah... cm3

• A.

625

• B.

225

• C.

125

• D.

121

C. 125
Explanation
The correct answer is 125. The total surface area of a cube is given by 6 times the square of its side length. If the total surface area is 150 cm2, then the side length can be found by taking the square root of 150/6, which is approximately 3.536 cm. The volume of a cube is given by the cube of its side length. Therefore, the volume of the cube is approximately 3.536^3 = 125 cm3.

Rate this question:

• 10.

### Perhatikan gambar!  Besar  ABC adalah ….

• A.

70°

• B.

80°

• C.

100°

• D.

160°

B. 80°
Explanation
In the given image, angle ABC is the largest angle among all the angles mentioned in the options. Therefore, the correct answer is 80°.

Rate this question:

• 11.

### Panjang hipotenusa suatu segitiga siku-siku adalah 34 cm. Panjang sisi siku-sikunya 16 cm dan x cm. Nilai x adalah ....

• A.

28

• B.

29

• C.

30

• D.

31

C. 30
Explanation
The length of the hypotenuse in a right-angled triangle can be found using the Pythagorean theorem, which states that the square of the hypotenuse is equal to the sum of the squares of the other two sides. In this case, the given lengths of the two sides are 16 cm and x cm. Plugging these values into the Pythagorean theorem, we get 16^2 + x^2 = 34^2. Simplifying this equation, we find that x^2 = 1156 - 256 = 900. Taking the square root of both sides, we get x = 30. Therefore, the value of x is 30 cm.

Rate this question:

• 12.

### Alas sebuah prisma berbentuk belah ketupat dengan panjang diagonalnya 16 cm dan 20 cm. Jika tinggi prisma 24 cm, volume prisma tersebut adalah...

• A.

3.480 cm3

• B.

3.840 cm3

• C.

4.380 cm3

• D.

7.680 cm3

B. 3.840 cm3
Explanation
The volume of a prism can be calculated by multiplying the area of the base by the height. In this case, the base of the prism is a rhombus with diagonals measuring 16 cm and 20 cm. The area of a rhombus can be calculated by multiplying the lengths of the diagonals and dividing by 2. So, the area of the base is (16 cm * 20 cm) / 2 = 160 cm². Multiplying this by the height of 24 cm gives us a volume of 3,840 cm³.

Rate this question:

• 13.

### Luas segitiga tersebut adalah ....

• A.

30 cm²

• B.

32,5 cm²

• C.

60 cm²

• D.

78 cm²

A. 30 cm²
Explanation
The correct answer is 30 cm² because the question asks for the area of the triangle, and 30 cm² is the only option that represents an area measurement.

Rate this question:

• 14.

### Alas sebuah prisma trapesium sama kaki mempunyai panjang sisi sejajarnya masing-masing 18 cm dan 12 cm, jarak kedua sisi sejajar 10 cm. Jika tinggi prisma 20 cm, volume prisma tersebut adalah...

• A.

6.000 cm3

• B.

3.000 cm3

• C.

2.000 cm3

• D.

1.500 cm3

B. 3.000 cm3
Explanation
The volume of a trapezoidal prism can be calculated by multiplying the area of the trapezoid base by the height of the prism. In this case, the length of the parallel sides of the trapezoid base are given as 18 cm and 12 cm, and the distance between them is given as 10 cm. To find the area of the trapezoid, we can use the formula (a+b)/2 * h, where a and b are the lengths of the parallel sides and h is the distance between them. Plugging in the given values, we get (18+12)/2 * 10 = 150 cm^2. Finally, multiplying the area by the height of the prism (20 cm), we get 150 cm^2 * 20 cm = 3000 cm^3, which is the volume of the prism.

Rate this question:

• 15.

### Jika jari-jari lingkaran berikut adalah 21 cm dan  π= , maka luas juring AOB  adalah ….

• A.

441 cm2

• B.

462 cm2

• C.

484 cm2

• D.

482 cm2

B. 462 cm2
Explanation
The area of a sector of a circle can be calculated using the formula A = (θ/360) * π * r^2, where θ is the central angle and r is the radius of the circle. In this case, the central angle is not given, so we cannot directly calculate the area of the sector. Therefore, an explanation for the given correct answer is not available.

Rate this question:

• 16.

### Panjang dan lebar suatu persegi panjang berbanding 4 : 3. Jika luasnya 48 cm2, maka panjang diagonalnya adalah ....

• A.

5 cm

• B.

10 cm

• C.

15 cm

• D.

20 cm

B. 10 cm
Explanation
The length and width of a rectangle are in a ratio of 4:3. If the area is 48 cm2, we can find the length and width by finding the factors of 48 that are in a 4:3 ratio. The factors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48. The factors that are in a 4:3 ratio are 12 and 16. So, the length is 12 cm and the width is 16 cm. To find the diagonal, we can use the Pythagorean theorem: diagonal^2 = length^2 + width^2. Plugging in the values, we get diagonal^2 = 12^2 + 16^2 = 144 + 256 = 400. Taking the square root of both sides, we get diagonal = 20 cm. Therefore, the correct answer is 20 cm.

Rate this question:

• 17.

### Bangun tersebut terdiri atas balok dan limas. Dengan ukuran seperti pada gambar, volume bangun tersebut adalah...

• A.

1.600 cm3

• B.

1.800 cm3

• C.

3.000 cm3

• D.

2.100 cm3

B. 1.800 cm3
Explanation
The given shape consists of a rectangular prism (balok) and a pyramid (limas). To find the volume, we need to calculate the volume of each shape separately and then add them together. The volume of the rectangular prism can be found by multiplying its length, width, and height. The volume of the pyramid can be found by multiplying the base area (length times width) with the height and dividing it by 3. By calculating the volumes of both shapes and adding them together, we get a volume of 1,800 cm3.

Rate this question:

• 18.

### Dua buah lingkaran berjari-jari masing-masing 8 cm dan 2 cm. Jika jarak antara kedua pusat lingkaran tersebut 10 cm, maka panjang garis singgung persekutuan luar kedua lingkaran adalah ….

• A.

5 cm

• B.

6 cm

• C.

7 cm

• D.

8 cm

D. 8 cm
Explanation
The length of the tangent line to the external intersection of two circles is equal to the difference of the radii of the circles. In this case, the larger circle has a radius of 8 cm and the smaller circle has a radius of 2 cm. Therefore, the length of the tangent line is 8 cm - 2 cm = 6 cm.

Rate this question:

• 19.

### Panjang diagonal sebuah persegi sisinya 8 cm adalah ....

• A.

4√2

• B.

4√3

• C.

8√2

• D.

8√3

C. 8√2
Explanation
The length of the diagonal of a square can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse (diagonal) is equal to the sum of the squares of the lengths of the other two sides. In this case, the length of each side of the square is 8 cm. By substituting the values into the Pythagorean theorem, the length of the diagonal is found to be 8√2.

Rate this question:

• 20.

### Sebuah aula berbentuk balok dengan ukuran panjang 9 meter, lebar 6 meter, dan tinggi 5 meter. Dinding bagian dalamnya akan dicat dengan biaya Rp50.000,00 per meter persegi. Seluruh biaya pengecatan aula adalah...

• A.

Rp9.500.000,00

• B.

Rp7.500.000,00

• C.

Rp3.750.000,00

• D.

Rp2.250.000,00