Quiz Persamaan Kuadrat

Approved & Edited by ProProfs Editorial Team
At ProProfs Quizzes, our dedicated in-house team of experts takes pride in their work. With a sharp eye for detail, they meticulously review each quiz. This ensures that every quiz, taken by over 100 million users, meets our standards of accuracy, clarity, and engagement.
Learn about Our Editorial Process
| Written by Reini
R
Reini
Community Contributor
Quizzes Created: 1 | Total Attempts: 867
Questions: 10 | Attempts: 873

SettingsSettingsSettings
Quiz Persamaan Kuadrat - Quiz

Questions and Answers
  • 1. 

    Tentukan himpunan penyelesaian persamaan kuadrat  berikut:p2 − 16 = 0Tentukan akar dari persamaan berikut : x2 + x − 2 = 0Sumber: http://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.comTentukan akar dari persamaan berikut : x2 + x − 2 = 0Sumber: http://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.comTentukan akar dari persamaan berikut : x2 + x − 2 = 0Sumber: http://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.com

    • A. 

      {-2,2}

    • B. 

      {-3,3}

    • C. 

      {-4,4}

    • D. 

      {-5,5}

    Correct Answer
    C. {-4,4}
    Explanation
    p" − 16 = 0
    (p + 4)(p − 4) = 0
    p + 4 = 0 → p = − 4
    p − 4 = 0 → p = 4
    Sehingga x = 4 atau x = − 4
    Himpunan penyelesaian {−4, 4}

    Rate this question:

  • 2. 

    Tentukan himpunan penyelesian dari persamaan :4 x2 − 16 x = 0 

    • A. 

      {0,1}

    • B. 

      {0,2}

    • C. 

      {0,3}

    • D. 

      {0,4}

    Correct Answer
    D. {0,4}
    Explanation
    4 x" − 16 x = 0
    Sederhanakan dulu, masing-masing bagi 4 :
    x" − 4 x = 0
    x(x − 4) = 0
    x = 0 atau x = 4
    himpunan penyelesian {0,4}

    Rate this question:

  • 3. 

    Faktor dari persamaan-persamaan kuadrat di bawah ini adalah:x2 + 7x + 12 = 0 

    • A. 

      X=1 atau x=-2

    • B. 

      X=-2 atau x=4

    • C. 

      X=1 atau x=-3

    • D. 

      X=-3 atau x=-4

    Correct Answer
    D. X=-3 atau x=-4
    Explanation
    Bentuk umum persamaan kuadrat : ax2 + bx + C = 0
    Untuk nilai a = 1 seperti semua soal nomor 2, pemfaktoran sebagai berikut:
    → Cari dua angka yang jika di tambahkan (+) menghasilkan b dan jika dikalikan (x) menghasilkan c
    x" + 7x + 12 = 0
    + → 7
    x → 12
    Angkanya : 3 dan 4
    Sehingga
    x2 + 7x + 12 = 0
    (x + 3)(x + 4) = 0
    x = − 3 atau x = − 4

    Rate this question:

  • 4. 

    Diberikan persamaan berikut ; x2 + 2x − 15 = 0tentukan faktor-faktor dari persamaan berikut. 

    • A. 

      X=-5 dan x=3

    • B. 

      X=2 dan x=-1

    • C. 

      X=-4 atau x=-5

    • D. 

      X=5 atau x=-2

    Correct Answer
    A. X=-5 dan x=3
    Explanation
    x2 + 2x − 15 = 0
    + → 2
    x → − 15
    Angkanya : 5 dan − 3
    Sehingga
    x2 + 2x − 15 = 0
    (x + 5)(x − 3) = 0
    x = − 5 atau x = 3

    Rate this question:

  • 5. 

    Diberikan persamaan-persamaan kuadrat sebagai berikut:2x2 −  x − 6 = 0fakto-faktor persamaan berikut adalah... 

    • A. 

      X=2 atau x=3

    • B. 

      X=3 atau x=1/2

    • C. 

      X=1 atau x=-3

    • D. 

      X=-2 atau x=-3/2

    Correct Answer
    D. X=-2 atau x=-3/2
    Explanation
    2x2 + x − 6 = 0
    data
    a = 2, b = 1 dan c = − 6
    Cari angka P dan Q
    P + Q = b = 1
    P.Q = ac = (2)(−6) = − 12
    Sehingga P = 4 dan Q = − 3

    masukkan pola
    1/a (ax + P)(ax + Q) = 0
    1/2(2x + 4)(2x − 3) sederhanakan, kalikan 1/2 dengan (2x + 4)
    (x + 2)(2x − 3) = 0
    x = −2 atau x = 3/2

    Rate this question:

  • 6. 

    Tentukan akar dari x" + x − 2 = 0.Tentukan akar dari x2 + x − 2 = 0.Sumber: http://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.comTentukan akar dari x2 + x − 2 = 0.Sumber: http://amaluddinnasution.blogspot.co.id/2015/05/cara-mencari-akar-akar-persamaan-kuadrat.html?enContent is Courtesy of Amaluddinnasution.blogspot.com

    • A. 

      X=3 atau x=-2

    • B. 

      X=1 atau x=-4

    • C. 

      X=-3 atau x=-2

    • D. 

      X=1 atau x=-2

    Correct Answer
    D. X=1 atau x=-2
    Explanation
    x2 + x − 2 = 0 Dik a = 1, b = 1, dan c = -2 Dengan rumus abc : ⇒ x1,2 = -1 ± √12 − 4(1)(-2) 2(1) ⇒ x1,2 = -1 ± √1 + 8 2 ⇒ x1,2 = -1 ± 3 2 ⇒ x1 = (-1 + 3)/2 = 1 ⇒ x2 = (-1 + 3)/2 = -2 Jadi,x = 1 atau x = -2.

    Rate this question:

  • 7. 

    Tentukan akar dari persamaan dari x2 − 9 + 14 = 0

    • A. 

      X=2 atau x=7

    • B. 

      X=7 atau x=-2

    • C. 

      X=-2 atau x=-7

    • D. 

      X=-7 aatau x=2

    Correct Answer
    A. X=2 atau x=7
    Explanation
    ) x2 − 9 x + 14 = 0
    + → − 9
    x → 14
    Angkanya : −2 dan − 7
    Sehingga
    x2 − 9x + 14 = 0
    (x − 2)(x − 7) = 0
    x = 2 atau x = 7

    Rate this question:

  • 8. 

    X1 dan x2 merupakan aka-akar persamaan kuadrat 2x2 + x − 4 = 0, maka persamaan kuadrat yang akar-akarnya (x1 - 4) dan (x2 - 4) adalah .....

    • A. 

      A. 2x"+ 32x − 17 = 0

    • B. 

      2x"+ 17x + 32 = 0

    • C. 

      2x" + 32x + 17 = 0

    • D. 

      2x" + 17x − 32 = 0

    Correct Answer
    B. 2x"+ 17x + 32 = 0
    Explanation
    Tinjau persamaan kuadrat yang pertama : ⇒ 2x2 + x − 4 = 0 Diketahui : a = 2, b = 1, dan c = -4. Jumlah akarnya : ⇒ x1 + x2 = -b a ⇒ x1 + x2 = -1 2 Hasil kali akarnya : ⇒ x1.x2 = c a ⇒ x1.x2 = -4 2 ⇒ x1.x2 = -2 Selanjutnya tinjau jumlah dan hasil kali akar-akar yang baru. Jumlah akarnya : ⇒ (x1 - 4) + (x2 - 4) = (x1 + x2) − 8 ⇒ (x1 - 4) + (x2 - 4) = -½ − 8 ⇒ (x1 - 4) + (x2 - 4) = -17⁄2 Hasil kali akarnya : ⇒ (x1 - 4).(x2 - 4) = (x1.x2) − 4x1 − 4x2 + 16 ⇒ (x1 - 4).(x2 - 4) = (x1.x2) − 4(x1 + x2) + 16 ⇒ (x1 - 4).(x2 - 4) = -2 − 4(-½) + 16 ⇒ (x1 - 4).(x2 - 4) = -2 + 2 + 16 ⇒ (x1 - 4).(x2 - 4) = 16 Jadi persamaan kuadrat barunya : ⇒ x2 − {(x1 - 4) + (x2 - 4)}x + (x1 - 4).(x2 - 4) = 0 ⇒ x2 − (-17⁄2)x + 16 = 0 ⇒ 2x2 + 17x + 32 = 0

    Rate this question:

  • 9. 

    Akar-akar persamaan kuadrat x2 + 2x + 4 = 0 adalah m dan n. Persamaan kuadrat baru yang akar-akarnya (m + 2) dan (n + 2) adalah ....

    • A. 

      X" − 2x + 4 = 0

    • B. 

      X"+ 4x + 2 = 0

    • C. 

      X" + 2x + 4 = 0

    • D. 

      X" − 4x + 2 = 0

    Correct Answer
    C. X" + 2x + 4 = 0
    Explanation
    x" + 2x + 4 = 0 Diketahui : a = 1, b = 2, dan c = 4. Jumlah akarnya : ⇒ m + n = -b a ⇒ m + n = -2 1 ⇒ m + n = -2 Hasil kali akarnya : ⇒ m.n = c a ⇒ m.n = 4 1 ⇒ m.n = 4 Selanjutnya tinjau jumlah dan hasil kali akar-akar yang baru. Jumlah akarnya : ⇒ (m + 2) + (n + 2) = (m + n) + 4 ⇒ (m + 2) + (n + 2) = -2 + 4 ⇒ (m + 2) + (n + 2) = 2 Hasil kali akarnya : ⇒ (m + 2).(n + 2) = m.n + 2m + 2n + 4 ⇒ (m + 2).(n + 2) = m.n + 2(m + n) + 4 ⇒ (m + 2).(n + 2) = 4 + 2(-2) + 4 ⇒ (m + 2).(n + 2) = 4 Selanjutnya susun persamaan kuadrat barunya : ⇒ x" − {(m + 2) + (n + 2)}x + (m + 2).(n + 2) = 0 ⇒ x" − 2x + 4 = 0

    Rate this question:

  • 10. 

    Diketahui m dan n merupakan akar-akar dari persamaan kuadrat 2x" − 3x + 6 = 0. Persamaan kuadrat yang akar-akarnya 1/m dan 1/n adalah .....

    • A. 

      6x" + 3x + 2 = 0

    • B. 

      6x"− 2x + 3 = 0

    • C. 

      6x" − 3x + 2 = 0

    • D. 

      6x" − 3x − 2 = 0

    Correct Answer
    B. 6x"− 2x + 3 = 0
    Explanation
    Tinjau persamaan kuadrat yang pertama : ⇒ 2x" − 3x + 6 = 0 Diketahui : a = 2, b = -3, dan c = 6. Jumlah akarnya : ⇒ m + n = -b a ⇒ m + n = 3 2 Hasil kali akarnya : ⇒ m.n = c a ⇒ m.n = 6 2 ⇒ m.n = 3 Selanjutnya tinjau jumlah dan hasil kali akar-akar yang baru. Jumlah akarnya : ⇒ 1 + 1 = m + n m n m.n ⇒ 1 + 1 = 3⁄2 m n 3 ⇒ 1 + 1 = 1 m n 2 Hasil kali akarnya : ⇒ 1 . 1 = 1 m n m.n ⇒ 1 . 1 = 1 m n 3 Dengan demikian, persamaan kuadrat baru adalah : ⇒ x" − (1/m + 1/n)x + (1/m.1/n) = 0 ⇒ x" − ½x + ⅓ = 0 ⇒ 6x" − 3x + 2 = 0 Cara Praktis : Jika akar-akar persamaan kuadrat yang baru adalah 1/x1 dan 1/X" (berkebalikan), maka persamaan kuadrat baru itu dapat kita cari dengan rumus : cx" + bx + a = 0 Sekarang perhatikan lagi persamaan kuadrat yang lama : ⇒ 2x" − 3x + 6 = 0 Diketahui : a = 2, b = -3, dan c = 6. Persaman kuadrat barunya : ⇒ cx" + bx + a = 0 ⇒ 6x" + (-3)x + 2 = 0 ⇒ 6x" − 3x + 2 = 0

    Rate this question:

Back to Top Back to top
×

Wait!
Here's an interesting quiz for you.

We have other quizzes matching your interest.