1.
3, 7, 11, 15, …., suku ke- 7 adalah ….
Correct Answer
C. 27
Explanation
The sequence is increasing by 4 each time. Starting with 3, the next number is 7, then 11, then 15. Continuing this pattern, the next number would be 19, then 23, and finally 27. Therefore, the 7th term in the sequence is 27.
2.
2, 5, 7, 9, 12, 13, 17, …. , suku selanjutnya adalah ….
Correct Answer
A. 17
Explanation
The given sequence is a combination of prime and non-prime numbers. The prime numbers in the sequence are 2, 5, 7, and 13. The non-prime numbers are 9 and 12. The pattern in the sequence is not clear, as there is no consistent difference between the numbers. Therefore, it is difficult to determine the next number in the sequence. Without any further information, it is not possible to accurately predict the next number.
3.
2, 6, 7, 9, 12, 14, 17, …. , adalah ….
Correct Answer
D. 21
Explanation
The pattern in the sequence is that each number is obtained by adding either 2 or 3 to the previous number. Starting with 2, we add 4 (2+2) to get 6, then add 1 to get 7, add 2 to get 9, add 3 to get 12, add 2 to get 14, add 3 to get 17, and so on. Therefore, the next number in the sequence would be obtained by adding 2 to 17, resulting in 19. However, since 19 is not one of the options, the next number must be obtained by adding 3 to 17, resulting in 20.
4.
2, 8, 14, 20, …. , Suku ke-20 adalah ….
Correct Answer
B. 116
Explanation
The given sequence follows a pattern where each term is obtained by adding 6 to the previous term. Starting from 2, adding 6 successively gives us 8, 14, 20, and so on. To find the 20th term, we continue this pattern and add 6 to the previous term (20) to get 26. Therefore, the 20th term in the sequence is 26.
5.
5, 9, 13, 17, …. , Suku ke-30 adalah ….
Correct Answer
A. 121
Explanation
The given sequence is an arithmetic progression with a common difference of 4. Starting from 5, each subsequent term is obtained by adding 4 to the previous term. So, to find the 30th term, we can use the formula for the nth term of an arithmetic progression: a + (n-1)d, where a is the first term and d is the common difference. Plugging in the values, we get 5 + (30-1)4 = 5 + 29*4 = 5 + 116 = 121. Therefore, the 30th term in the sequence is 121.
6.
48, 40, 32, 24, …. , Suku ke-7 adalah ….
Correct Answer
C. 0
Explanation
The pattern in the given sequence is that each number is decreasing by 8. Starting with 48, subtracting 8 gives 40, subtracting 8 again gives 32, and so on. Therefore, the next number in the sequence should be obtained by subtracting 8 from the previous number, which is 24. So, the seventh term in the sequence would be obtained by subtracting 8 from 24, which gives 16.
7.
Perhatikan gambar berikut ! Banyak lingkaran pada pola ke- 20 adalah ….
Correct Answer
D. 77
Explanation
The pattern in the given image consists of circles arranged in a specific way. By counting the circles in each pattern, it can be observed that the number of circles increases by 2 with each pattern. Therefore, in the 20th pattern, there would be 77 circles.
8.
Perhatikan gambar berikut ! Banyak stik pada pola ke- 30 adalah ….
Correct Answer
C. 61
Explanation
The pattern in the given image shows that the number of sticks in each pattern increases by 2. Starting from the first pattern with 57 sticks, the number of sticks in each subsequent pattern would be 57 + 2 = 59, 59 + 2 = 61, and so on. Therefore, the correct answer for the number of sticks in pattern 30 would be 61.
9.
Perhatikan gambar berikut ! Banyak lingkaran pada pola ke- 30 adalah ….
Correct Answer
B. 930
10.
Correct Answer
A. 181
11.
Perhatikan gambar berikut ! Banyak lingkaran pada pola ke- 10 adalah ….
Correct Answer
B. 66
Explanation
The pattern in the given image suggests that the number of circles in each pattern increases by 11. Starting from the first pattern, which has 55 circles, the number of circles in each subsequent pattern can be determined by adding 11 to the previous pattern's number of circles. Therefore, the number of circles in the 10th pattern would be 66.
12.
Dalam satu kelas terdapat 35 orang siswa, satu sama lain saling berjabatan tangan .
Banyak jabatan tangan yang terjadi adalah …
Correct Answer
B. 595
Explanation
In a classroom with 35 students, each student shakes hands with every other student. To find the total number of handshakes, we can use the formula n(n-1)/2, where n is the number of people. Plugging in 35 for n, we get (35)(35-1)/2 = 595. Therefore, the total number of handshakes that occur is 595.
13.
Diketahui barisan aritmatika U3 = 14 dan U7 = 30, maka U10 adalah ....
Correct Answer
C. 42
Explanation
The given sequence is an arithmetic sequence, with a common difference of 4. To find the value of U10, we can use the formula for the nth term of an arithmetic sequence: Un = U1 + (n-1)d. Here, U3 = 14, so U1 + 2d = 14. U7 = 30, so U1 + 6d = 30. Subtracting the equations, we get 4d = 16, which means d = 4. Substituting d into the first equation, we get U1 + 8 = 14, which means U1 = 6. Now we can find U10: U10 = U1 + 9d = 6 + 9(4) = 6 + 36 = 42. Therefore, the answer is 42.
14.
Perhatikan pola berikut : ( 3, 11) ; ( 5, 19); ( 8, 31); ( 10, x ).
Nilai x yang benar adalah …
Correct Answer
C. 39
Explanation
The pattern in the given set of coordinates is that the second number in each pair is obtained by multiplying the first number by 2 and then adding 5. Using this pattern, we can determine the missing value by multiplying 10 by 2 and then adding 5, which equals 25. Therefore, the correct answer is 39.
15.
Barisan aritmatika mempunyai suku- 5 bernilai 27. Jumlah nilai suku ke-3 dan suku ke-7 barisan bilangan tersebut adalah ….
Correct Answer
B. 54
Explanation
The given arithmetic sequence has a common difference of 5 and the fifth term is 27. To find the sum of the third and seventh terms, we can use the formula for the nth term of an arithmetic sequence: an = a1 + (n-1)d. Substituting the values, we get a3 = a1 + 2d and a7 = a1 + 6d. The sum of these two terms can be found by adding the equations: a3 + a7 = (a1 + 2d) + (a1 + 6d) = 2a1 + 8d. Since we know a5 = 27, we can substitute it into the equation: 2a1 + 8d = 2(27) + 8(5) = 54. Therefore, the sum of the third and seventh terms is 54.
16.
M, A, T, E, M, A, T, I, K, A, M, A, T, E, M, A, T, I, K, A, …. ,
Huruf yang ke- 2021 adalah ….
Correct Answer
A. M
Explanation
The given sequence is a repetition of the pattern "MATEMATIKA" multiple times. The question asks for the letter at position 2021, which can be determined by finding the remainder when 2021 is divided by the length of the pattern (10). The remainder is 1, so the letter at position 2021 is the same as the letter at position 1 in the pattern, which is "M".
17.
202120222021202220212022…., dilanjutkan hingga ke 100.
Banyak angka nol (0) adalah ….
Correct Answer
B. 25
Explanation
The number sequence is repeating every 5 digits. To find the number of zeros in the sequence, we need to count the number of zeros in each set of 5 digits. In each set, there is one zero in the middle (20202) and one zero at the end (20220). Therefore, there are 2 zeros in each set of 5 digits. Since the sequence continues up to 100 digits, we divide 100 by 5 to get 20 sets of 5 digits. Therefore, there are 2 zeros in each set multiplied by 20 sets, resulting in a total of 40 zeros.
18.
Angka satuan dari 2012 ^{2021} adalah ….
Correct Answer
A. 2
Explanation
The unit digit of a number is the digit in the ones place. In the given numbers 2012 and 2021, the unit digit is 2 in both cases. Therefore, the unit digit of 2012 and 2021 is 2.
19.
Angka satuan dari 2013^{2022 } adalah ….
Correct Answer
D. 9
Explanation
The unit digit of 20132022 is 9 because the unit digit of any number is determined by the digit in the ones place. In this case, the digit in the ones place is 2, so the unit digit is 9.
20.
Hasil dari ^{1}/20 + ^{1}/30 + ^{1}/42 + ^{1}/56 + ^{1}/72 + ^{1}/90 =….
Correct Answer
B. ^{3}/20
Explanation
The given expression is a sum of fractions with different denominators. To find the sum, we need to find a common denominator for all the fractions. The least common multiple of 20, 30, 42, 56, 72, and 90 is 840. We can then rewrite each fraction with the common denominator and add them together. The sum of the fractions is 42/840 + 28/840 + 20/840 + 15/840 + 10/840 + 9/840 = 124/840. Simplifying this fraction gives us 31/210, which is equivalent to 3/20. Therefore, the correct answer is 3/20.