Basic Operations - Matrices

  • CCSS.Math.Content.HSN-VM
Reviewed by Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Merchyle
M
Merchyle
Community Contributor
Quizzes Created: 2 | Total Attempts: 2,673
| Attempts: 440 | Questions: 10 | Updated: Mar 20, 2025
Please wait...
Question 1 / 10
0 %
0/100
Score 0/100
1) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»3«/mn»«/mtd»«mtd»«mn»5«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»5«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»+«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»3«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»3«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mo»§nbsp;«/mo»«mi»u«/mi»«mi»n«/mi»«mi»d«/mi»«mi»e«/mi»«mi»f«/mi»«mi»i«/mi»«mi»n«/mi»«mi»e«/mi»«mi»d«/mi»«/math»

Explanation

not-available-via-ai

Submit
Please wait...
About This Quiz
Basic Operations - Matrices - Quiz

This quiz will assess your understanding and skills in solving matrix problems.

2)
We’ll put your name on your report, certificate, and leaderboard.
2) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mo»-«/mo»«mn»2«/mn»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»2«/mn»«/mtd»«mtd»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»5«/mn»«/mtd»«mtd»«mn»9«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»+«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»5«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»9«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»11«/mn»«/mtd»«mtd»«mn»17«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
3) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»2«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«mtd»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»4«/mn»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»3«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»11«/mn»«/mtd»«mtd»«mn»13«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»27«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»29«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
4) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mo»-«/mo»«mn»4«/mn»«mo»§#183;«/mo»«mfenced»«mrow»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»3«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»2«/mn»«/mtd»«mtd»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/mrow»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»48«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»24«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»24«/mn»«/mtd»«mtd»«mn»40«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
5) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»3«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»6«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»6«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»3«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»5«/mn»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»68«/mn»«/mtd»«mtd»«mn»40«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»49«/mn»«/mtd»«mtd»«mn»26«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
6) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«mtd»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced»«mrow»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»5«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«mtd»«mn»3«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»+«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»3«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»5«/mn»«/mtd»«mtd»«mn»5«/mn»«/mtd»«mtd»«mn»3«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/mrow»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»41«/mn»«/mtd»«mtd»«mn»53«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»23«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»27«/mn»«/mtd»«mtd»«mn»4«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
7) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»6«/mn»«mi»y«/mi»«/mtd»«mtd»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»2«/mn»«mi»y«/mi»«/mtd»«mtd»«mo»-«/mo»«mn»2«/mn»«mi»y«/mi»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mi»y«/mi»«/mtd»«mtd»«mi»x«/mi»«mi»y«/mi»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»-«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»6«/mn»«mi»y«/mi»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»3«/mn»«mi»y«/mi»«/mtd»«mtd»«mi»y«/mi»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»12«/mn»«msup»«mi»y«/mi»«mi»y«/mi»«/msup»«mo»-«/mo»«mn»6«/mn»«mi»y«/mi»«/mtd»«mtd»«mn»6«/mn»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«mo»+«/mo»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»15«/mn»«mi»y«/mi»«/mtd»«mtd»«mo»-«/mo»«mn»2«/mn»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«mi»y«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi»y«/mi»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
8) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«mtd»«mn»3«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»+«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»3«/mn»«/mtd»«mtd»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mn»6«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»17«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»37«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»16«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»9«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
9) «math xmlns=¨https://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»4«/mn»«mi»y«/mi»«/mtd»«mtd»«mn»2«/mn»«mi»y«/mi»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«/mtd»«mtd»«mn»3«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»+«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»2«/mn»«mi»y«/mi»«/mtd»«mtd»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mfenced»«/mrow»«/mfenced»«mo»§#183;«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»5«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«mo»=«/mo»«mfenced close=¨]¨ open=¨[¨»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»20«/mn»«mi»y«/mi»«/mtd»«mtd»«mo»-«/mo»«mn»30«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»5«/mn»«/mtd»«mtd»«mo»-«/mo»«mn»10«/mn»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»

Explanation

not-available-via-ai

Submit
10) A, B and C are matrices: A ( B + C ) = AB + CA

Explanation

The given equation states that the product of matrix A with the sum of matrices B and C is equal to the sum of the products of matrix A with B and matrix A with C. This equation is sometimes true because matrix multiplication is not commutative, meaning the order of multiplication matters. In some cases, the equation will hold true, but in others, it will not. Therefore, the statement "Sometimes true" is the correct answer.

Submit
View My Results
Cancel
  • All
    All (10)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
A, B and C are matrices: A ( B + C ) = AB + CA
Alert!

Back to Top Back to top
Advertisement