Remedial Matematika Wajib Kelas Xi

Reviewed by Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Matkelasxiips1si
M
Matkelasxiips1si
Community Contributor
Quizzes Created: 1 | Total Attempts: 127
| Attempts: 127 | Questions: 20
Please wait...
Question 1 / 20
0 %
0/100
Score 0/100
1.

Explanation

not-available-via-ai

Submit
Please wait...
About This Quiz
Remedial Matematika Wajib Kelas Xi - Quiz

SEMOGA SUKSES
  ; &nbs p; Marcelinus Sinaga

Tell us your name to personalize your report, certificate & get on the leaderboard!
2. Nilai minimum Kurva parabola dari fungsi kuadrat f (x) = x2 – 8x adalah … .

Explanation

The minimum value of a parabola can be found by using the vertex formula, which is -b/2a. In this case, the coefficient of x^2 is 1 and the coefficient of x is -8. Plugging these values into the formula, we get -(-8)/2(1) = 8/2 = 4. Therefore, the minimum value of the parabola is f(4) = 4^2 - 8(4) = 16 - 32 = -16.

Submit
3.

Explanation

not-available-via-ai

Submit
4. Interval x yang membuat kurva fungsi f (x) = x2 + 6x – 4 tidak pernah turun adalah … .

Explanation

The correct answer is x ≥ -3. This is because the equation f(x) = x^2 + 6x - 4 represents a quadratic function. The graph of a quadratic function is a parabola that opens upward if the coefficient of x^2 is positive. In this case, the coefficient of x^2 is 1, which is positive. When x ≥ -3, the function f(x) = x^2 + 6x - 4 will never decrease because the parabola opens upward. Therefore, the interval x ≥ -3 ensures that the curve of the function never decreases.

Submit
5.

Explanation

not-available-via-ai

Submit
6.

Explanation

not-available-via-ai

Submit
7. Nilai maksimum kurva parabola dari fungsi kuadrat f(x) = 4x – x2 adalah … .

Explanation

The maximum value of a parabola can be found by determining the vertex of the parabola. In this case, the given quadratic function f(x) = 4x - x^2 is in the form of f(x) = ax^2 + bx + c, where a = -1, b = 4, and c = 0. To find the x-coordinate of the vertex, we can use the formula x = -b/2a. Plugging in the values, we get x = -4/(2*(-1)) = -4/(-2) = 2. To find the y-coordinate of the vertex, we substitute x = 2 into the function: f(2) = 4(2) - (2^2) = 8 - 4 = 4. Therefore, the maximum value of the parabola is 4.

Submit
8.

Explanation

not-available-via-ai

Submit
9. Garis singgung pada parabola y = x2 – 4 yang tegak lurus pada garis y = x+ 3 memotong sumbu Y adalah … .

Explanation

The tangent line to the parabola y = x^2 - 4 that is perpendicular to the line y = x + 3 will intersect the y-axis at a certain point.

Submit
10. Gradien garis singgung pada kurva f (x) = x2 +1 di titik (1,2) adalah … .

Explanation

The gradient of the tangent line at the point (1,2) on the curve f(x) = x^2 + 1 is 2. This means that the slope of the tangent line at that point is 2, indicating that the curve is steeply increasing at that point.

Submit
11.

Explanation

not-available-via-ai

Submit
12. Nilai Optimum dari kurva Fungsi h(x) = x2 – 4x + 6 adalah … .

Explanation

The given function is a quadratic function in the form of h(x) = x^2 - 4x + 6. To find the optimum value, we need to find the vertex of the parabola. The vertex of a quadratic function in the form of ax^2 + bx + c can be found using the formula x = -b/2a. In this case, a = 1 and b = -4. Plugging these values into the formula, we get x = -(-4)/2(1) = 2. So, the x-coordinate of the vertex is 2. To find the corresponding y-coordinate, we substitute x = 2 into the function h(x) = x^2 - 4x + 6. h(2) = 2^2 - 4(2) + 6 = 4 - 8 + 6 = 2. Therefore, the minimum value of the function is 2.

Submit
13.

Explanation

not-available-via-ai

Submit
14. Interval yang membuat kurva fungsi f (x) = x2 – 5x + 6 selalu naik adalah … .

Explanation

The correct answer is x > 52 because for any value of x greater than 52, the function f(x) = x^2 - 5x + 6 will always increase. This can be determined by analyzing the quadratic equation and observing that the coefficient of the x^2 term is positive, indicating an upward opening parabola. Therefore, the function will always have a positive slope and continue to rise as x increases beyond 52.

Submit
15. Nilai Gradien Garis singgung pada kurva y = f(x) = - x2 + 3x + 1 pada titik yang berabsis  x  = -1 adalah … .

Explanation

The gradient of a tangent line to a curve represents the slope of the line at a specific point. In this case, the curve is represented by the equation y = -x^2 + 3x + 1. To find the gradient at x = -1, we need to find the derivative of the equation and substitute x = -1 into it. The derivative of -x^2 + 3x + 1 is -2x + 3. Substituting x = -1 into this equation gives us -2(-1) + 3 = 5. Therefore, the gradient of the tangent line at x = -1 is 5.

Submit
16. Interval x yang membuat kurva fungsi g (x) = 7 – 3x - x2  tidak pernah Naik adalah … .

Explanation

The given function is a quadratic function, g(x) = 7 - 3x - x^2. To find the interval where the function never increases, we need to find the values of x for which the derivative of the function is always negative. The derivative of g(x) is -3 - 2x. To find when the derivative is negative, we set -3 - 2x -3/2. Therefore, the interval x ≥ -3/2 is the correct answer.

Submit
17. Nilai stasioner  Fungsi y = x3 – 3x2 + 3x -2 adalah … .

Explanation

The stationary value of a function occurs where the derivative is equal to zero. To find the stationary values of the function y = x^3 - 3x^2 + 3x - 2, we need to find the derivative and set it equal to zero. The derivative of the function is y' = 3x^2 - 6x + 3. Setting this equal to zero and solving for x, we get x = 1. Therefore, the stationary value of the function is x = 1.

Submit
18.

Explanation

not-available-via-ai

Submit
19.

Explanation

not-available-via-ai

Submit
20. Interval x yang membuat kurva fungsi g (x) = x2 + 4x – 9 selalu turun adalah … .

Explanation

The correct answer is x

Submit
View My Results

Quiz Review Timeline (Updated): Jul 22, 2024 +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Jul 22, 2024
    Quiz Edited by
    ProProfs Editorial Team
  • Jun 09, 2020
    Quiz Created by
    Matkelasxiips1si
Cancel
  • All
    All (20)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
Nilai minimum Kurva parabola dari fungsi kuadrat f (x) = x2 – 8x...
Interval x yang membuat kurva fungsi f (x) = x2 + 6x – 4 tidak...
Nilai maksimum kurva parabola dari fungsi kuadrat f(x) = 4x – x2...
Garis singgung pada parabola y = x2 – 4 yang tegak lurus pada...
Gradien garis singgung pada kurva f (x) = x2 +1 di titik (1,2) adalah...
Nilai Optimum dari kurva Fungsi h(x) = x2 – 4x + 6 adalah...
Interval yang membuat kurva fungsi f (x) = x2 – 5x + 6 selalu...
Nilai Gradien Garis singgung pada kurva y = f(x) = - x2 + 3x + 1 pada...
Interval x yang membuat kurva fungsi g (x) = 7 – 3x - x2 ...
Nilai stasioner  Fungsi y = x3 – 3x2 + 3x -2 adalah...
Interval x yang membuat kurva fungsi g (x) = x2 + 4x – 9 selalu...
Alert!

Advertisement