Geometry - Parallel Lines And Transversals Chapter 3 Test

20 Questions | Attempts: 473
Share

SettingsSettingsSettings
Geometry - Parallel Lines And Transversals Chapter 3 Test - Quiz

Geometry - Parallel Lines and TransversalsG. CO. 1 G. CO. 12 G. CO. 9 G. GPE. 5 G. MG. 3


Questions and Answers
  • 1. 
    Find the value of the variable(s) in the figure.  Explain your reasoning. 
  • 2. 
    Classify the relationship between 8 and 14. 
    • A. 

      Same Side Interior

    • B. 

      Alternate Interior

    • C. 

      Alternate Exterior

    • D. 

      Corresponding

  • 3. 
    Classify the relationship between 3 and 10. 
    • A. 

      Alternate Interior

    • B. 

      Corresponding

    • C. 

      Alternate Exterior

    • D. 

      Same Side Interior

  • 4. 
    In the figure, m 2 = 92 and m 12 = 74. Find the m10 and tell which postulate or theorem you used. 
    • A. 

      92; Corresponding Angles Theorem

    • B. 

      92; Alternate Interior Angles Theorem

    • C. 

      88; Same Side Interior Angles Theorem

    • D. 

      88; Supplementary Angles Theorem

  • 5. 
    In the figure, m 2 = 92 and m 12 = 74. Find the m9 and tell which postulate or theorem you used. 
    • A. 

      92; Corresponding Angles Theorem; Supplementary Angles

    • B. 

      92; Vertical Angles; Alternate Interior Angles

    • C. 

      88; Vertical Angles; Alternate Interior Angles

    • D. 

      88; Corresponding Angles Theorem; Supplementary Angles

  • 6. 
    Find the   (Hint: Draw an auxiliary line.)
    • A. 

      130

    • B. 

      100

    • C. 

      50

    • D. 

      80

  • 7. 
    Name a segment that is skew to.
    • A. 

      Segment VZ

    • B. 

      Segment QR

    • C. 

      Segment QU

    • D. 

      Segment WX

  • 8. 
    • A. 

      Line BD || Line EG; Converse Same Side Interior Angles Theorem

    • B. 

      Line BD || Line EG; Converse Alternate Interior Angles Theorem

    • C. 

      Line BF || Line CG; Converse Same Side Interior Angles Theorem

    • D. 

      Line BF || Line CG; Converse Alternate Interior Angles Theorem

  • 9. 
    • A. 

      Line BF || Line CG; Converse Same Side Interior Angles Theorem

    • B. 

      Line BF || Line CG; Converse Alternate Interior Angles Theorem

    • C. 

      Line BD || Line EG; Converse Alternate Interior Angles Theorem

    • D. 

      Line BD || Line EG; Converse Same Side Interior Angles Theorem

  • 10. 
    Construct the segment that represents the distance from T to  
    • A. 

      A

    • B. 

      B

    • C. 

      C

    • D. 

      D

  • 11. 
    Find the value of x and y
  • 12. 
    Find the value of x and y
  • 13. 
    Find x so that . Identify the postulate or theorem you used. 
  • 14. 
    If  l || m, find the value of x and the measure of each angle.     l                                    m
  • 15. 
    Find x so that l || m. Identify the postulate or theorem you used.
  • 16. 
     StatementReason (Select the correct letter)1∠CBD ≅ ∠BFEGiven2∠CBD ≅ ∠ABF19)3∠ABF ≅ ∠BFE20)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    • A. 

      Definition of congruent angles

    • B. 

      Vertical angles are congruent

    • C. 

      Reflexive property of congruence

    • D. 

      Symmetric property of congruence

    • E. 

      Transitive property of congruence

  • 17. 
     StatementReason (Select the correct letter)1∠CBD ≅ ∠BFEGiven2∠CBD ≅ ∠ABF19)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX3∠ABF ≅ ∠BFE20)
    • A. 

      Definition of congruent angles

    • B. 

      Vertical angles are congruent

    • C. 

      Reflexive property of congruence

    • D. 

      Symmetric property of congruence

    • E. 

      Transitive property of congruence

  • 18. 
     StatementReason (Select the correct letter)1m∠CBD = m∠BFEGiven2m∠CBD + m∠DBF = 180º21)3m∠BFE + m∠DBF = 180º22)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    • A. 

      Angles that form a linear pair are supplementary

    • B. 

      Angles that are adjacent are supplementary

    • C. 

      Reflexive property of equality

    • D. 

      Substitution property of equality

    • E. 

      Transitive property of equality

  • 19. 
     StatementReason (Select the correct letter)1m∠CBD = m∠BFEGiven2m∠CBD + m∠DBF = 180º21)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX3m∠BFE + m∠DBF = 180º22)
    • A. 

      Angles that form a linear pair are supplementary

    • B. 

      Angles that are adjacent are supplementary

    • C. 

      Reflexive property of equality

    • D. 

      Substitution property of equality

    • E. 

      Transitive property of equality

Back to Top Back to top
×

Wait!
Here's an interesting quiz for you.

We have other quizzes matching your interest.