# Binary Number And Code Systems Quiz!

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
| By Tjkane
T
Tjkane
Community Contributor
Quizzes Created: 3 | Total Attempts: 8,952
Questions: 10 | Attempts: 1,671

Settings

The binary number system is a numbering system that indicates numeric values using two peculiar digits 0 and 1. Mostly all computer devices use the binary numbering system to represent electronic circuit voltage state. This quiz has been created to test your knowledge about the correct binary codes and numbers representation. So, let's try out the quiz. All the best!

• 1.

### What is the binary representation for 0xAC ?

• A.

10101001

• B.

10101010

• C.

10101100

• D.

11001010

• E.

11111111

C. 10101100
Explanation
The binary representation for 0xAC is 10101100.

Rate this question:

• 2.

### What is the hexadecimal representation for the binary number 100100101011 ?

• A.

0xABC

• B.

0x911

• C.

0x92B

• D.

0x92C

• E.

0x94C

C. 0x92B
Explanation
The hexadecimal representation of a binary number is obtained by grouping the binary digits into sets of four and converting each set into its corresponding hexadecimal digit. In this case, the binary number 100100101011 can be grouped as 1001 0010 1011. Converting each group into hexadecimal, we get 9 2 B. Therefore, the hexadecimal representation for the given binary number is 0x92B.

Rate this question:

• 3.

### What is the base 10 number 233, expressed as binary ?

• A.

11101001

• B.

11111001

• C.

11101011

• D.

11011011

• E.

None of the above

A. 11101001
Explanation
The base 10 number 233 can be expressed as binary by repeatedly dividing it by 2 and noting the remainder. Starting with 233, the remainder is 1. Dividing 233 by 2 gives 116 with a remainder of 0. Dividing 116 by 2 gives 58 with a remainder of 0. Dividing 58 by 2 gives 29 with a remainder of 0. Dividing 29 by 2 gives 14 with a remainder of 1. Dividing 14 by 2 gives 7 with a remainder of 0. Dividing 7 by 2 gives 3 with a remainder of 1. Dividing 3 by 2 gives 1 with a remainder of 1. Finally, dividing 1 by 2 gives 0 with a remainder of 1. Reading the remainders from bottom to top gives the binary representation of 233 as 11101001.

Rate this question:

• 4.

### What is the base 10 number, 312, expressed as hexadecimal ?

• A.

0xCC2

• B.

0x3B2

• C.

0x444

• D.

0x138

• E.

0xEF2

D. 0x138
Explanation
The base 10 number 312 can be converted to hexadecimal by dividing it by 16 repeatedly and noting down the remainders. Starting from the rightmost digit, the remainders are 12, 3, and 1. These remainders correspond to the hexadecimal digits C, 3, and 1 respectively. Therefore, the hexadecimal representation of 312 is 0x138.

Rate this question:

• 5.

### What is the binary equivalent for decimal number 9?

• A.

1010

• B.

1001

• C.

1000

• D.

0001

B. 1001
Explanation
The binary equivalent for decimal number 9 is 1001. In binary, each digit represents a power of 2, starting from the rightmost digit being 2^0, then 2^1, 2^2, and so on. To convert decimal 9 to binary, we divide it by 2 repeatedly and record the remainders. The remainders, read from bottom to top, give us the binary representation. In this case, when we divide 9 by 2, we get a quotient of 4 and a remainder of 1. Dividing 4 by 2 gives us a quotient of 2 and a remainder of 0. Finally, dividing 2 by 2 gives us a quotient of 1 and a remainder of 0. Reading the remainders from bottom to top, we get 1001.

Rate this question:

• 6.

### What is the binary equivalent for Hexadecimal number 2A6?

• A.

001010100110

• B.

001010100111

• C.

101010100110

• D.

001110000000

A. 001010100110
Explanation
The binary equivalent for the hexadecimal number 2A6 is 001010100110.

Rate this question:

• 7.

### What is the decimal equivalent for BCD number 136?

• A.

1000 0011 0110

• B.

0001 0011 0110

• C.

0010 0010 0101

• D.

1100 0001 0101

C. 0010 0010 0101
• 8.

### What is the decimal equivalent for Hexadecimal number 3B?

• A.

49

• B.

48

• C.

59

• D.

57

C. 59
Explanation
The decimal equivalent for the hexadecimal number 3B is 59. In hexadecimal, each digit represents a value from 0 to 15. The digit 3 represents 3 in decimal, and the digit B represents 11 in decimal. To convert hexadecimal to decimal, we multiply each digit by the corresponding power of 16 and add them together. In this case, 3 multiplied by 16^1 (16) plus B multiplied by 16^0 (11) equals 48 + 11, which equals 59 in decimal.

Rate this question:

• 9.

### Attach an EVEN parity to codeword 011 1000

• A.

1

• B.

0

• C.

10

• D.

11

A. 1
Explanation
The given codeword is 011 1000. To attach an EVEN parity, we need to count the number of 1s in the codeword. If the count is even, we append a 0 to the codeword. If the count is odd, we append a 1. In this case, there are 3 1s in the codeword, which is an odd count. Therefore, we append a 1 to the codeword to achieve an EVEN parity.

Rate this question:

• 10.

### What is the decimal equivalent for binary number 11001?

• A.

24

• B.

25

• C.

26

• D.

28

B. 25
Explanation
The binary number 11001 can be converted to decimal by multiplying each digit by the corresponding power of 2 and adding them together. In this case, the calculation would be: (1 * 2^4) + (1 * 2^3) + (0 * 2^2) + (0 * 2^1) + (1 * 2^0) = 16 + 8 + 0 + 0 + 1 = 25. Therefore, the decimal equivalent for the binary number 11001 is 25.

Rate this question:

Quiz Review Timeline +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

• Current Version
• Mar 21, 2022
Quiz Edited by
ProProfs Editorial Team
• Aug 15, 2007
Quiz Created by
Tjkane

Related Topics