Gibilisco - Rlc And Glc Circuit Analysis

20 Questions | Total Attempts: 185

SettingsSettingsSettings
Please wait...
Integrated Circuit Quizzes & Trivia

Questions and Answers
  • 1. 
    Suppose a coil and capacitor are connected in series. The inductive reactance is 250 Ω, andthe capacitive reactance is −300 Ω. What is the complex impedance?
    • A. 

      0 + j550

    • B. 

      0 − j50

    • C. 

      250 − j300

    • D. 

      −300 + j250

  • 2. 
    Suppose a coil of 25.0 µH and capacitor of 100 pF are connected in series. The frequency is5.00 MHz. What is the complex impedance?
    • A. 

      0 + j467

    • B. 

      25 + j100

    • C. 

      0 − j467

    • D. 

      25 − j100

  • 3. 
    When R = 0 in a series RLC circuit, but the net reactance is not zero, the impedance vector
    • A. 

      Always points straight up.

    • B. 

      Always points straight down.

    • C. 

      Always points straight toward the right.

    • D. 

      None of the above is correct.

  • 4. 
    Suppose a resistor of 150 Ω, a coil with a reactance of 100 Ω, and a capacitor with areactance of −200 Ω are connected in series. What is the complex impedance?
    • A. 

      150 + j100

    • B. 

      150 − j200

    • C. 

      100 − j200

    • D. 

      150 − j100

  • 5. 
    Suppose a resistor of 330 Ω, a coil of 1.00 µH, and a capacitor of 200 pF are in series. Whatis the complex impedance at 10.0 MHz?
    • A. 

      330 − j199

    • B. 

      300 + j201

    • C. 

      300 + j142

    • D. 

      330 − j16.8

  • 6. 
    Suppose a coil has an inductance of 3.00 µH and a resistance of 10.0 Ω in its winding. Acapacitor of 100 pF is in series with this coil. What is the complex impedance at 10.0 MHz?
    • A. 

      10 + j3.00

    • B. 

      10 + j29.2

    • C. 

      10 − j97

    • D. 

      10 + j348

  • 7. 
    Suppose a coil has a reactance of 4.00 Ω. What is the complex admittance, assuming there is nothing else is in the circuit?
    • A. 

      0 + j0.25

    • B. 

      0 + j4.00

    • C. 

      0 − j0.25

    • D. 

      0 − j4.00

  • 8. 
    What will happen to the susceptance of a capacitor if the frequency is doubled and all otherfactors remain constant?
    • A. 

      It will decrease to half its former value.

    • B. 

      It will not change.

    • C. 

      It will double.

    • D. 

      It will quadruple.

  • 9. 
    Suppose a coil and capacitor are in parallel, with jBL =−j0.05 and jBC = j0.03. What is thecomplex admittance, assuming that nothing is in series or parallel with these components?
    • A. 

      0 − j0.02

    • B. 

      0 − j0.07

    • C. 

      0 + j0.02

    • D. 

      −0.05 + j0.03

  • 10. 
    Imagine a coil, a resistor, and a capacitor connected in parallel. The resistance is 1.0 Ω, thecapacitive susceptance is 1.0 S, and the inductive susceptance is −1.0 S. Then, suddenly, thefrequency is cut to half its former value. What is the complex admittance at the new frequency?
    • A. 

      1.0 + j0.0

    • B. 

      1.0 + j1.5

    • C. 

      1.0 − j1.5

    • D. 

      1.0 − j2.0

  • 11. 
    Suppose a coil of 3.50 µH and a capacitor of 47.0 pF are in parallel. The frequency is 9.55MHz. There is nothing else in series or parallel with these components. What is the complexadmittance?
    • A. 

      0 + j0.00282

    • B. 

      0 − j0.00194

    • C. 

      0 + j0.00194

    • D. 

      0 − j0.00758

  • 12. 
    A vector pointing southeast in the GB plane would indicate
    • A. 

      Pure conductance with zero susceptance.

    • B. 

      Conductance and inductive susceptance.

    • C. 

      Conductance and capacitive susceptance.

    • D. 

      Pure susceptance with zero conductance.

  • 13. 
    Suppose a resistor with conductance 0.0044 S, a capacitor with susceptance 0.035 S, and acoil with susceptance −0.011 S are all connected in parallel. What is the complex admittance?
    • A. 

      0.0044 + j 0.024

    • B. 

      0.035 − j0.011

    • C. 

      −0.011 + j0.035

    • D. 

      0.0044 + j0.046

  • 14. 
    Suppose a resistor of 100 Ω, a coil of 4.50 µH, and a capacitor of 220 pF are in parallel.What is the complex admittance at a frequency of 6.50 MHz?
    • A. 

      100 + j0.00354

    • B. 

      0.010 + j0.00354

    • C. 

      100 − j0.0144

    • D. 

      0.010 + j0.0144

  • 15. 
    Suppose the complex admittance of a circuit is 0.02 + j0.20. What is the complex impedance,assuming the frequency does not change?
    • A. 

      50 + j5.0

    • B. 

      0.495 − j4.95

    • C. 

      50 − j5.0

    • D. 

      0.495 + j4.95

  • 16. 
    Suppose a resistor of 51.0 Ω, an inductor of 22.0 µH, and a capacitor of 150 pF are inparallel. The frequency is 1.00 MHz. What is the complex impedance?
    • A. 

      51.0 − j14.9

    • B. 

      51.0 + j14.9

    • C. 

      46.2 − j14.9

    • D. 

      46.2 + j14.9

  • 17. 
    Suppose a series circuit has 99.0 Ω of resistance and 88.0 Ω of inductive reactance. An ac rms voltage of 117 V is applied to this series network. What is the current?
    • A. 

      1.18 A

    • B. 

      1.13 A

    • C. 

      0.886 A

    • D. 

      0.846 A

  • 18. 
    What is the voltage across the reactance in the preceding example?
    • A. 

      78.0 V

    • B. 

      55.1 V

    • C. 

      99.4 V

    • D. 

      74.4 V

  • 19. 
    Suppose a parallel circuit has 10 Ω of resistance and 15 Ω of reactance. An ac rms voltage of20 V is applied across it. What is the total current?
    • A. 

      2.00 A

    • B. 

      2.40 A

    • C. 

      1.33 A

    • D. 

      0.800 A

  • 20. 
    What is the current through the resistance in the preceding example?
    • A. 

      2.00 A

    • B. 

      2.40 A

    • C. 

      1.33 A

    • D. 

      0.800 A

Back to Top Back to top