Data Structure - Binary Trees

30 Questions | Total Attempts: 1576

SettingsSettingsSettings
Data Structure - Binary Trees - Quiz

.


Questions and Answers
  • 1. 
    A full binary tree with 6 non-leaf nodes contains maximum of
    • A. 

      13 nodes

    • B. 

      6 nodes

    • C. 

      9 nodes

    • D. 

      11 nodes

  • 2. 
     A binary search tree is generated by inserting in order the following integers: 50, 15, 12, 25, 40, 58, 81, 31, 18, 37, 60, 24 The number of the node in the left sub-tree and right sub-tree of the root, respectively, is  
    • A. 

      (4, 7)

    • B. 

      (7,4)

    • C. 

      (8, 3)

    • D. 

      (3,8)

  • 3. 
    The following routine display the ………….. element in a binary search tree? public void BST(Tree root) {         while(root.left() != null)         {                root = root.left();         }         System.out.println(root.data()); }
  • 4. 
    If this tree is used for sorting, then new no 8 should be placed as the 
    • A. 

      Left child of the node labelled 6

    • B. 

      Right child of the node labelled 14

    • C. 

      Right child of the node labelled 6

    • D. 

      Left child of the node labelled 9

  • 5. 
    When you construct a BST with the preorder traversal of a binary search tree 10, 4, 3, 5, 11, 12,21,36 Then which of the following are leaf nodes.
    • A. 

      5,3,4

    • B. 

      5,3,12

    • C. 

      3,5,12

    • D. 

      3,5,36

  • 6. 
    Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. Will the in-order traversal sequence of the resultant tree  be the same for the numbers in the sequence                       9,7, 5, 1, 8, 3, 2,6, 0, 4  (Yes / No)
    • A. 

      Yes

    • B. 

      No

  • 7. 
    The following numbers are inserted into an empty binary tree and binary search tree in the given order: 20,10, 1, 3, 5, 15, 12, 16,34,87,35. The height of the binary tree and   binary search tree , respectively ,is.
    • A. 

      4,4

    • B. 

      3,3

    • C. 

      3,4

    • D. 

      4,3

  • 8. 
    The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which one of the following is the postorder traversal sequence of the same tree?
    • A. 

      10, 20, 15, 23, 25, 35, 42, 39, 30

    • B. 

      15, 10, 25, 23, 20, 42, 35, 39, 30

    • C. 

      15, 20, 10, 23, 25, 42, 35, 39, 30

    • D. 

      15, 10, 23, 25, 20, 35, 42, 39, 30

  • 9. 
    Construct a binary tree by using inorder and preorder sequences given below. Inorder:  D,B,H,E,I,A,F,C,G Preorder:  A,B,D,E,H,I,C,F,G Find the post order traversal
    • A. 

      D,H,E,I,B,F,G,C,A

    • B. 

      A,C,G,F,B,I,E,H,D

    • C. 

      D,H,I,E, B,F,G,C ,A

    • D. 

      D,H,I,E,G,F,B,C,A

  • 10. 
    Which of the two key sequences construct same BSTs Select the ones you like
    • A. 

      A1[ ]  = {8, 3, 6, 1, 4, 7, 10, 14, 13} A2[ ] = {8, 10, 14, 3, 6, 4, 1, 7, 13}

    • B. 

      B1[ ]= {15, 10, 25, 23, 20, 42, 35, 39, 30} B2[ ] ={15, 20, 10, 23, 25, 42, 35, 39, 30}

    • C. 

      C1[ ]={7, 5, 1, 8, 3, 6, 9, 4, 2} C2[ ]={ 9,7, 5, 1, 8, 3, 2,6,  4}  

    • D. 

      D1[ ]={15, 10, 25, 23, 20, 42, 35, 39, 30} D2[ ]={ 15,35,39,10,25,20,23,42,30}  

  • 11. 
    Which of the following is AVL Tree?
    • A. 

      Only A

    • B. 

      A and C

    • C. 

      A, B and C

    • D. 

      Only B

  • 12. 
    Consider the given AVL Tree, if the node 2 is added to this, then the parent node of 5 in a balanced tree is…..
    • A. 

      8

    • B. 

      4

    • C. 

      11

    • D. 

      12

  • 13. 
    What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.
    • A. 

      2

    • B. 

      3

    • C. 

      4

    • D. 

      5

  • 14. 
    Insert the following sequence of elements into an AVL tree, starting with an empty tree:  10, 20, 15, 25, 30, 16, 18, 19 after deleting the node 30 from the AVL tree then the root node of the resultant tree is
    • A. 

      18

    • B. 

      20

    • C. 

      30

    • D. 

      15

  • 15. 
    Show the result when an initially empty AVL tree has keys 1 through 8 inserted in order. Then the node in the last level will be
    • A. 

      8

    • B. 

      7,8

    • C. 

      7

    • D. 

      6,7

  • 16. 
    AVL tree of height 4 contains ……………. minimum possible number of nodes
    • A. 

      11

    • B. 

      12

    • C. 

      14

    • D. 

      10

  • 17. 
    To restore the AVL property after inserting a element, we start at the insertion point and move towards root of that tree. is this statement true?
    • A. 

      True

    • B. 

      False

  • 18. 
    Given an empty AVL tree, how would you construct AVL tree when a set of numbers are given without performing any rotations?
    • A. 

      Just build the tree with the given input

    • B. 

      Find the median of the set of elements given, make it as root

    • C. 

      Use trial and error

    • D. 

      Use dynamic programming to build the tree

  • 19. 
    The balance factor of a node A was 0 and a node was inserted to the left of the node A then
    • A. 

      It is required to balance Node A

    • B. 

      It is required to balance Right child of A

    • C. 

      It is required to balance Parent of node A

    • D. 

      Balancing may or may not be required for A

  • 20. 
    AVL is traversed in the following order recursively: Right, root, left The output sequence will be in
    • A. 

      Descending order

    • B. 

      Ascending order

    • C. 

      Level-wise order

    • D. 

      No specific order

  • 21. 
    Given the code, choose the correct option that is consistent with the code. (Here A is the heap)    build(A,i)      left-> 2*i      right->2*i +1      temp- > i             if(left<= heap_length[A] ans A[left] >A[temp])         temp -> left             if (right = heap_length[A] and A[right] > A[temp])         temp->right             if temp!= i         swap(A[i],A[temp])         build(A,temp)
    • A. 

      Build function of max heap

    • B. 

      Build function of min heap

    • C. 

      Build function of any heap

    • D. 

      Search element in any heap

  • 22. 
    State the complexity of algorithm given below.         int function(vector<int> arr)         int len=arr.length();         if(len==0)         return;         temp=arr[len-1];         arr.pop_back();         return temp;
    • A. 

      O(n)

    • B. 

      O(logn)

    • C. 

      O(1)

    • D. 

      O(n logn)

  • 23. 
    An array consists of n elements. We want to create a heap using the elements. The time complexity of building a heap will be in order of  
    • A. 

      O(n*n*logn)

    • B. 

      O(n*logn)

    • C. 

      O(n*n)

    • D. 

      O(n *logn *logn)

  • 24. 
    If we implement heap as maximum heap , adding a new node of value 15 into it . What value will be at leaf nodes of the left subtree of the heap.
    • A. 

      2

    • B. 

      7

    • C. 

      3

    • D. 

      15

  • 25. 
    What will be the position of 65, when a max heap is constructed on the input elements 5, 70, 45, 7, 12, 15, 13, 65, 30, 25?
    • A. 

      Root

    • B. 

      Last level

    • C. 

      Second level

    • D. 

      Anywhere in heap

Back to Top Back to top