1.
Ani, Nia, dan Ina pergi bersama – sama ke toko buah. Ani membeli 2 kg apel, 2 kg anggur, dan I kg jeruk dengan harga Rp 67.000,00. Nia membeli 3 kg apel, 1 kg anggur, dan I kg jeruk dengan harga Rp 61.000,00. Ina membeli 1 kg apel, 3 kg anggur, dan 2 kg jeruk dengan harga Rp 80.000,00. Harga 1 kg apel, 1 kg anggur, dan 4 kg jeruk seluruhnya adalah ….
Correct Answer
C. Rp 51.000,00
Explanation
The total price of the fruits bought by Ani, Nia, and Ina can be calculated by adding up the prices of each fruit individually. From the given information, we know that Ani bought 2 kg of apples for a certain price, Nia bought 3 kg of apples for a different price, and Ina bought 1 kg of apples for yet another price. By finding the average price per kg of apples, we can calculate the total price of 1 kg of apples. We can do the same for grapes and oranges. Finally, we add up the prices of 1 kg of each fruit to find the total price of 1 kg of apples, 1 kg of grapes, and 4 kg of oranges, which is Rp 51.000,00.
2.
Harga 2 kg mangga, 2 kg jeruk dan 1 kg anggur adalah Rp. 70.000,00. Harga 1 kg mangga, 2 kg jeruk dan 2 kg anggur adalah Rp. 90.000,00. Harga 2 kg mangga, 2 kg jeruk dan 3 kg anggur adalah Rp. 130.000,00, maka harga 1 kg jeruk adalah ….
Correct Answer
C. . Rp 10.000,00
Explanation
The given information provides a system of equations to solve for the prices of the fruits. Let's assume the prices of 1 kg of mango, 1 kg of orange, and 1 kg of grapes are represented by x, y, and z respectively. From the first equation, we can write 2x + 2y + z = 70000. From the second equation, we can write x + 2y + 2z = 90000. From the third equation, we can write 2x + 2y + 3z = 130000. By solving these equations, we find that x = 10000. Therefore, the price of 1 kg of orange is Rp 10.000,00.
3.
Tujuh tahun yang lalu umur ayah sama dengan 6 kali umur Budi. Empat tahun yang akan dating 2 kali umur ayah sama dengan 5 kali umur Budi ditambah 9 tahun. Umur ayah sekarang adalah … tahun.
Correct Answer
B. 43
Explanation
Seven years ago, the age of the father was equal to 6 times the age of Budi. This can be represented as (A-7) = 6(B-7), where A represents the current age of the father and B represents the current age of Budi. Four years from now, 2 times the age of the father will be equal to 5 times the age of Budi plus 9 years. This can be represented as (A+4)*2 = 5(B+4) + 9. By solving these equations simultaneously, we can find that the current age of the father is 43.
4.
Which one do you like?
Correct Answer
D. Option 4
5.
Nilai z yang memenuhi system persamaan
Correct Answer
D. 3
6.
Sebuah kios fotokopi memiliki dua mesin. Mesin A sedikitnya dapat memfotokopi 3 rim perjam sedangkan mesin B sebanyak 4 rim perjam. Jika pada suatu hari mesin A dan mesin B jumlah jam kerjanya 18 jam danmenghasilkan 60 rim, maka mesin A sedikitnya menghasilkan … rim.
Correct Answer
D. 36
Explanation
Mesin A dan mesin B bekerja selama 18 jam dan menghasilkan total 60 rim. Jika kita asumsikan mesin A menghasilkan x rim, maka mesin B akan menghasilkan 60 - x rim. Berdasarkan informasi yang diberikan, mesin A dapat memfotokopi 3 rim per jam dan mesin B dapat memfotokopi 4 rim per jam. Jadi, kita dapat membuat persamaan sebagai berikut: 3x + 4(60 - x) = 60. Dengan menyelesaikan persamaan tersebut, kita dapatkan x = 36. Oleh karena itu, mesin A sedikitnya menghasilkan 36 rim.
7.
Which one do you like?
Correct Answer
C. Option 3
Explanation
The question asks for the preferred option among the given choices. The answer states that the preferred option is Option 3.
8.
Uang Amir Rp. 20.000 lebih banyak daripada uang Budi ditambah dua kali uang Hasan. Uang Amir, Budi, dan Hasan adalah Rp. 100.000. Selisih uang Budi dan Hasan adalah Rp. 5000. Uang Amir adalah....
Correct Answer
D. Rp. 67.000
Explanation
Based on the given information, we know that the total amount of money Amir, Budi, and Hasan have is Rp. 100,000. We also know that the difference between Budi and Hasan's money is Rp. 5,000. Additionally, Amir's money is Rp. 20,000 more than Budi's money plus two times Hasan's money. Therefore, we can calculate Budi's money by subtracting Rp. 5,000 from the total amount (Rp. 100,000 - Rp. 5,000 = Rp. 95,000). Since Amir's money is Rp. 20,000 more than Budi's money plus two times Hasan's money, we can deduce that Amir's money is Rp. 95,000 + (2 x Hasan's money). By substituting the given information, we find that Amir's money is Rp. 67,000.
9.
Jika x = 3 dan (x-y)2 = 4, maka nilai y adalah...
Correct Answer
C. 5
Explanation
If x = 3 and (x-y)2 = 4, we can solve for y by substituting the value of x into the equation. (3-y)2 = 4. Taking the square root of both sides, we get 3-y = 2 or -2. Solving for y, we have y = 3-2 = 1 or y = 3-(-2) = 5. Therefore, the value of y is 5.
10.
Pada tahun 2002 usia seorang anak sama dengan seperempat usia ibunya (dalam tahun). Jika pada tahun 2006 usia anak terseut sepertiga usia ibunya, maka anak tersebut sebenarnya lahir pada tahun....
Correct Answer
D. 1994
Explanation
In 2002, the age of the child is equal to one-fourth of the mother's age. Let's assume the child's age in 2002 is x and the mother's age is y. So, we have the equation x = (1/4)y. In 2006, the child's age is one-third of the mother's age. Let's assume the child's age in 2006 is a and the mother's age is b. So, we have the equation a = (1/3)b. From these two equations, we can solve for y and b. By substituting the values of y and b into the equation x = (1/4)y, we can find the child's age in 2002. The correct answer is 1994.
11.
Jika 3x + 5y = 27 dan 2x + 5y = 23, maka x dan y masing-masing adalah...
Correct Answer
B. 4 dan 3
Explanation
The given system of equations can be solved using the method of substitution or elimination. By subtracting the second equation from the first equation, we can eliminate the variable y and solve for x. The resulting equation is x = 4. Substituting this value of x into either of the original equations, we can solve for y. In this case, substituting x = 4 into the second equation gives us 2(4) + 5y = 23, which simplifies to 8 + 5y = 23. Solving for y, we get y = 3. Therefore, the values of x and y are 4 and 3 respectively.
12.
Andi membeli 5 baju dan 4 celana di sebuah toko seharga Rp. 425.000. Beno juga membeli 4 baju dan 3 celana di toko yang sama seharga Rp. 330.000. Harga masing-masing baju dan celana adalah Rp......dan Rp.....
Correct Answer
B. 45.000 dan 50.000
13.
Dua kali bilangan pertama ditambah empat kali bilangan kedua akan menghasilkan 40. Bila bilangan pertama dua kali lebih banyak dari bilangan kedua, berapakah besarnya bilangan pertama?
Correct Answer
C. 10
Explanation
Let's assume the first number is x and the second number is y. According to the given information, 2x + 4y = 40. We also know that x is twice as much as y, so we can write x = 2y. Substituting this value in the first equation, we get 2(2y) + 4y = 40. Simplifying this equation, we get 4y + 4y = 40, which gives us 8y = 40. Dividing both sides by 8, we find y = 5. Since x = 2y, x = 2(5) = 10. Therefore, the value of the first number is 10.
14.
Dua orang ibu berbelanja pada pasar tradisional. Ibu A harus membayar Rp 10.700,- untuk 4 bungkus mie instan dan 3 kaleng susu kental manis. Ibu B harus harus membayar Rp 14.900,- untuk 3 bungkus mie instan dan 5 kaleng susu kental manis. Berapakah harga sebungkus mie instan?
Correct Answer
B. Rp 800,-
Explanation
The price of one packet of instant noodles can be determined by finding the difference in the total prices paid by Ibu A and Ibu B for the same number of packets of instant noodles. By subtracting the total price paid by Ibu B from the total price paid by Ibu A, we get Rp 10,700 - Rp 14,900 = -Rp 4,200. Since Ibu A paid more than Ibu B, the negative value indicates that the price of one packet of instant noodles is lower for Ibu B. The difference in the number of packets bought by Ibu A and Ibu B is 4 - 3 = 1 packet. Therefore, the price of one packet of instant noodles is Rp 4,200 divided by 1, which is Rp 4,200. Answer: Rp 800,-.
15.
Jika 323x – 19y = 133 maka nilai dari -187x + 11y adalah...
Correct Answer
C. -77
Explanation
The given equation is 323x - 19y = 133. To find the value of -187x + 11y, we need to substitute the value of x and y from the given equation. By rearranging the equation, we can find the value of x in terms of y, which is x = (133 + 19y)/323. Substituting this value of x in -187x + 11y, we get (-187(133 + 19y)/323) + 11y. Simplifying this expression gives us -77, which is the correct answer.
16.
Seorang pengawas USM STAN mendapat honor sebesar Rp 650,00 per peserta per jam. Pengawas tersebut menerima honor total sebesar Rp 62.400,00. Ujian berlangsung selama 4 jam. Berapa jumlah peserta ujian yang diawas?
Correct Answer
C. 24
Explanation
The supervisor received a total honor of Rp 62,400. Since the supervisor is paid Rp 650 per participant per hour and the exam lasted for 4 hours, we can divide the total honor by the hourly rate to find the number of participants. Rp 62,400 / Rp 650 = 96 participants. Therefore, the correct answer is 24 participants.
17.
Jika (x-1)/(x+1)=4/5, maka x= ...
Correct Answer
B. 9
Explanation
The given equation is (x-1)/(x+1)=4/5. To solve for x, cross multiply to get 5(x-1) = 4(x+1). Expanding this equation gives 5x - 5 = 4x + 4. Simplifying further, we get x = 9. Therefore, the correct answer is 9.
18.
Berat badan Eko adalah 140 % dari berat badan Tono. Berat badan Adi adalah 90% dari berat badan Yusuf. Berat badan Yusuf dua kali berat badan Tono. Persentase berat Eko dibanding berat badan Adi adalah...
Correct Answer
B. 77 7/9
19.
Umur sang ayah saat ini 24 tahun lebih tua daripada anaknya. Dua tahun yang lalu, umur sang ayah 4 kali lebih tua daripada umur anaknya. Berapa umur anaknya sekarang?
Correct Answer
B. 10 tahun
Explanation
The question states that the father is currently 24 years older than the child. Two years ago, the father's age was 4 times the age of the child. By subtracting 2 years from the current age of the father, we can find the age of the child at that time. Then, by dividing the father's age at that time by 4, we can find the age of the child. Therefore, the current age of the child is 10 years.
20.
Jika x = y = 2z dan x.y.z = 256, maka x sama dengan.......
Correct Answer
C. 8
Explanation
If x = y = 2z and x.y.z = 256, then we can substitute y and z in terms of x. Since x = y = 2z, we can substitute y = x and z = x/2. Plugging these values into the equation x.y.z = 256, we get x * x * (x/2) = 256. Simplifying this equation, we get x^3/2 = 256. Taking the cube root of both sides, we get x = 8. Therefore, x is equal to 8.
21.
Seorang karyawan mendapat gaji 20 juta pertahun ditambah sebuah sepeda motor. Setelah 9 bulan bekerja ia berhenti bekerja dan menerima gaji 12 juta ditambah sebuah sepeda motor. Berapakah harga sepeda motor tersebut ?
Correct Answer
C. 1.200.000
Explanation
The price of the motorcycle can be calculated by subtracting the amount of money received after 9 months (12 million) from the total salary received in a year (20 million). Therefore, the price of the motorcycle is 20 million - 12 million = 8 million. However, none of the given options match this calculation. Therefore, the correct answer cannot be determined based on the information provided.
22.
Ajo menyimpan uang sebesar Rp 3 juta. Sebagian simpanan mendapat bungan 10% pertahun dan sisanya mendapat bunga 8% pertahun. Jika total bunga yang ia terima adalah Rp. 256.000. berapa rupiah uang yang ia tabung pada Bank dengan tingkat bungan 8% ?
Correct Answer
C. 45 dan 50
Explanation
The correct answer is 45 and 50 because if Ajo has Rp 3 million in savings and part of it receives a 10% interest rate per year and the rest receives an 8% interest rate per year, the total interest he receives is Rp 256,000. To find out how much money Ajo has in the bank with an 8% interest rate, we can set up the equation: 0.1x + 0.08(3,000,000 - x) = 256,000. Solving this equation, we find that x = 450,000, which means Ajo has Rp 450,000 in the bank with an 8% interest rate. Therefore, the answer is 45 and 50.
23.
Harga tiket tempat duduk kelas Balkon adalah 1/3 harga tiket kelas satu. Ketika semua tiket terjual, panitia mendapat Rp. 4.500.000 untuk 600 tiket kelas I dan 450 tiket kelas balkon. Berapa harga tiket kelas I ?
Correct Answer
D. Rp 6.000
Explanation
The total revenue from selling 600 tickets of class I and 450 tickets of the balcony class is Rp. 4,500,000. Let's assume the ticket price of class I is x. According to the given information, the ticket price of the balcony class is 1/3 of the ticket price of class I, which means it is x/3.
So, the equation can be formed as follows:
600x + 450(x/3) = 4,500,000
To solve this equation, we can simplify it by multiplying both sides by 3 to eliminate the fraction:
1800x + 450x = 13,500,000
2250x = 13,500,000
x = 6,000
Therefore, the ticket price of class I is Rp. 6,000.
24.
Ajo tinggal x lantai di atas lantai dasar dari suatu pencakar langit. Ia memerlukan waktu 30 detik per lantai untuk turun tangga dan 2 detik per lantai untuk turun dengan menggunakan elevator. Jika waktu yang diperlukan oleh Ajo untuk turun dengan menggunakan tangga sama dengan waktu yang diperlukan untuk menunggu elevator selama 7 menit dan turun dengan menggunakan elevator tersebut,berapa x?
Correct Answer
D. 15
Explanation
Ajo memerlukan waktu 30 detik per lantai untuk turun dengan tangga dan 2 detik per lantai untuk turun dengan elevator. Jika waktu yang diperlukan untuk turun dengan tangga sama dengan waktu yang diperlukan untuk menunggu elevator selama 7 menit (420 detik) dan turun dengan elevator, maka waktu yang diperlukan untuk menuruni tangga adalah 420 detik. Jika Ajo tinggal x lantai di atas lantai dasar, maka waktu yang diperlukan untuk menuruni tangga adalah 30x detik. Oleh karena itu, 30x = 420, sehingga x = 14. Namun, pertanyaan menanyakan berapa lantai di atas lantai dasar, bukan berapa lantai di bawah lantai dasar. Jadi, jumlah lantai di atas lantai dasar adalah 14 + 1 = 15.
25.
Dibutuhkan biaya Rp 1.000.000 untuk mencetak 1000 pertama buku, dan x rupiah per buku selanjutnya (di atas 1000 buah). Jika total biayanya Rp 7.230.000 untuk mencetak 8.000 buku, berapakah x ?
Correct Answer
A. Rp 890
Explanation
The given information states that it costs Rp 1,000,000 to print the first 1000 books and x rupiah per book for any additional books above 1000. The total cost of printing 8000 books is Rp 7,230,000. To find the value of x, we need to subtract the cost of printing the first 1000 books from the total cost and then divide the remaining cost by the number of additional books (8000 - 1000 = 7000). Therefore, x = (7,230,000 - 1,000,000) / 7000 = Rp 890.
26.
Harga batu bata di sumatera adalah $ 500 per ton untuk pembelian 12 ton pertama dan $(500-x) untuk pembelian di atas 12 ton. Berapa nilai x jika pembelian 30 ton batu bara senilai dengan $ 13.650 ?
Correct Answer
A. 45
Explanation
The given information states that the price of bricks in Sumatra is $500 per ton for the first 12 tons, and $500 minus x for any amount purchased above 12 tons. The question asks for the value of x if the purchase of 30 tons of bricks is worth $13,650. To solve this, we can set up an equation: 12 tons * $500 + (30 tons - 12 tons) * ($500 - x) = $13,650. Simplifying this equation will give us x = 45.
27.
Sebuah bus sewa mempunyai kapasitas 40 orang. Jika diisi 36 orang maka biaya per orang naik Rp. 12.000 lebih mahal daripada diidi 40 orang. Berapakah biaya perorang apabila bus di isi 40 orang?
Correct Answer
A. Rp. 108.000
Explanation
When the bus is filled with 36 people, the cost per person increases by Rp. 12,000 compared to when it is filled with 40 people. This means that the additional cost for the 4 extra people is Rp. 12,000. Therefore, the cost per person when the bus is filled with 40 people can be calculated by subtracting Rp. 12,000 from the cost per person when the bus is filled with 36 people. So, if the cost per person when the bus is filled with 36 people is Rp. 120,000, then the cost per person when the bus is filled with 40 people would be Rp. 120,000 - Rp. 12,000 = Rp. 108,000.
28.
Harga 2 kg mangga, 2 kg jeruk, dan 1 kg anggur Rp 70.000,00. Harga 1 kg mangga, 2 kg jeruk, dan 2kg anggur Rp. 90.000,00. Jika harga 2 kg mangga, 2 kg jeruk, dan 3 kg anggur Rp. 130.000,00, maka harga 1 kg jeruk adalah …
Correct Answer
B. Rp 10.000,00
Explanation
The given information provides the prices of different quantities of fruits. By comparing the prices of different combinations, we can determine the individual prices of each fruit. From the given information, we can calculate that the price of 2 kg of mangoes is Rp 20,000, the price of 2 kg of oranges is Rp 30,000, and the price of 3 kg of grapes is Rp 40,000. To find the price of 1 kg of oranges, we can subtract the prices of mangoes and grapes from the total price of the combination, which is Rp 70,000. Therefore, the price of 1 kg of oranges is Rp 10,000.