# Pvhs Algebra 2 Final

14 Questions | Total Attempts: 103  Settings  This test will contain information from the PVHS Algebra 2 coursework from sections 5-9

Related Topics
• 1.
Compound Interest 1   How much will you have in your account if:\$57387  is invested at  11.2%  compounded  semi-annually  for  84  years
• A.

\$211637693.12

• B.

\$542440089.7

• C.

\$2184.39

• D.

\$167350.18

• 2.
Compound Interest 1   How much will you have in your account if:\$4865  is invested at  10.4%  compounded  monthly  for  62  years
• A.

\$68986.34

• B.

\$65096.82

• C.

\$2987779.59

• D.

\$90372.21

• 3.
Population Growth 1  In  the population of  1931  Geekville was  29214.  If the growth rate is  2.9%,  what was  the population in ?  1944
• A.

269870

• B.

577048

• C.

27657

• D.

42591

• 4.
Population Growth 1  In  the population of  1925  Geekville was  1329.  If the growth rate is  8.6%,  what was  the population in ?  1971
• A.

69437

• B.

44812812

• C.

132696

• D.

77889

• 5.
Population Growth 1  In  the population of  1931  Geekville was  11931.  If the growth rate is  5.8%,  what was  the population in ?  1993
• A.

10494

• B.

434910

• C.

202718

• D.

139437

• 6.
Continuous Compound Interest 2  How long will it take:  \$6574  to grow into  \$53287  if it is invested at  2.8%  compounded continuously
• A.

25.23 years

• B.

12.39 years

• C.

74.73 years

• D.

50.79 years

• 7.
Continuous Compound Interest 2  How long will it take:  \$49835  to grow into  \$85721  if it is invested at  10.6%  compounded continuously
• A.

38.02 years

• B.

11.56 years

• C.

8.58 years

• D.

5.12 years

• 8.
Compound Interest 2  How long will it take:  \$27065  to grow into  \$88726  if it is invested at  2.3%  compounded  semi-annually
• A.

18.12 years

• B.

26.47 years

• C.

51.92 years

• D.

15.81 years

• 9.
Compound Interest 2  How long will it take:  \$42192  to grow into  \$80437  if it is invested at  6.4%  compounded  daily
• A.

15.8 years

• B.

9.23 years

• C.

7.48 years

• D.

10.08 years

• 10.
Radioactive Decay 1  The half-life of boogonium is  10  years. If you have  15  grams in  1930,  how much will be left in  2053?
• A.

8.05 grams

• B.

0 grams

• C.

6.91 grams

• D.

18.21 grams

• 11.
Radioactive Decay 1  The half-life of boogonium is  326  years. If you have  36  grams in  1923,  how much will be left in  2080?
• A.

25.45 grams

• B.

34.64 grams

• C.

25.78 grams

• D.

18.21 grams

• 12.
Radioactive Decay 2  You discovered a new radioactive isotope isotope and named it Geekonium-25. At  10  a.m., you have  31  mg in your petrie dish and at  2  p.m., you measure only  18  mg.  What's the half-life?
• A.

Half-life = 8.54 hours

• B.

Half-life = 9.27 hours

• C.

Half-life = 4.85 hours

• D.

Half-life = 5.1 hours

• 13.
Radioactive Decay 2  You discovered a new radioactive isotope isotope and named it Geekonium-25. At  5  a.m., you have  85  mg in your petrie dish and at  6  p.m., you measure only  25  mg.  What's the half-life?
• A.

Half-life = 7.36 hours

• B.

Half-life = 4.85 hours

• C.

Half-life = 4.35 hours

• D.

Half-life = 7.48 hours

• 14.
Radioactive Decay 2  You discovered a new radioactive isotope isotope and named it Geekonium-25. At  9  a.m., you have  74  mg in your petrie dish and at  7  p.m., you measure only  56  mg.  What's the half-life?
• A.

Half-life = 60.62 hours

• B.

Half-life = 24.87 hours

• C.

Half-life = 20.65 hours

• D.

Half-life = 24.2 hours