Chapter 4 (Standard #6) Practice

46 Questions | Total Attempts: 129

Settings
Please wait...
Chapter 4 (Standard #6) Practice

Use this quiz (and the results) as a way to review/prepare for our test.


Questions and Answers
  • 1. 
    Why does AAA not work as a reason to prove triangles congruent?
  • 2. 
    Given: Triangle ABC is congruent to triangle XYZ Prove: Side AB is congruent to side XY (what postulate, theorem, or definition confirms that side AB is congruent to side XY?)
    • A. 

      Corresponding parts of congruent triangles are congruent

    • B. 

      ASA Postulate

    • C. 

      SAS Postulate

    • D. 

      SSS Posulate

    • E. 

      AAS Theorem

  • 3. 
    By which reason can it be proven that triangles DAB and DAC are congruent?
    • A. 

      AAA

    • B. 

      AAS

    • C. 

      SSA

    • D. 

      SSS

  • 4. 
    Which combination of congruent corresponding parts can you not use to prove two triangles congruent?
    • A. 

      SAA

    • B. 

      AAA

    • C. 

      ASA

    • D. 

      SAS

    • E. 

      SSS

  • 5. 
    If two of the angles in a triangle are 50 degrees and 100 degrees what is the third angle?
    • A. 

      10 degrees

    • B. 

      50 degrees

    • C. 

      90 degrees

    • D. 

      30 degrees

  • 6. 
    If the sides of a triangle are 8 ft, 4 ft, and 5 ft what type of triangle is it?
    • A. 

      Scalene

    • B. 

      Isosceles

    • C. 

      Equilateral

    • D. 

      Quadrilateral

  • 7. 
    How many degrees do the three angles of a triangle add up to?
    • A. 

      90

    • B. 

      180

    • C. 

      200

    • D. 

      360

  • 8. 
    What is the name for a triangle that has all three sides the same length?
    • A. 

      Scalene

    • B. 

      Isosceles

    • C. 

      Equilateral

    • D. 

      Obtuse

  • 9. 
    What makes a triangle Isosceles?
    • A. 

      All three sides are the same length

    • B. 

      Two of the sides are the same length

    • C. 

      None of the sides are the same length

    • D. 

      Four sides are the are the same length

  • 10. 
     A triangle with 90 degree angle is a right triangle.
    • A. 

      True

    • B. 

      False

  • 11. 
     A triangle can have two obtuse angles.
    • A. 

      True

    • B. 

      False

  • 12. 
    A triangle can have two acute angles.
    • A. 

      True

    • B. 

      False

  • 13. 
    The acute angles of a right triangle are ___________ complementary.
    • A. 

      Always

    • B. 

      Never

    • C. 

      Sometimes

  • 14. 
    Calculate the angle marked with the question mark.  Note: do not measure since the pictures are not exact. Choose the answer below.
    • A. 

      90 degreees

    • B. 

      41 degree

    • C. 

      40 degrees

    • D. 

      49 degrees

  • 15. 
    You can build two triangles that have the same side lengths but are not congruent.
    • A. 

      True

    • B. 

      False

  • 16. 
    How would you classify this triangle?(Check all that apply)
    • A. 

      Scalene

    • B. 

      Right

    • C. 

      Isosceles

    • D. 

      Acute

    • E. 

      Equlateral

  • 17. 
    What congruence postulate can be used to prove that the two triangles are congruent?
    • A. 

      SAS

    • B. 

      SSS

    • C. 

      ASA

  • 18. 
    What congruence postulate can be used to prove that the two triangles are congruent?
    • A. 

      SSS

    • B. 

      ASA

    • C. 

      SAS

  • 19. 
    What is y?
    • A. 

      160

    • B. 

      20

    • C. 

      80

  • 20. 
    If triangle ABC = triangle JLK, what side is congruent to AB
    • A. 

      JK

    • B. 

      KL

    • C. 

      JL

  • 21. 
    How many sides are congruent in a scalene triangle?
    • A. 

      0

    • B. 

      2

    • C. 

      3

  • 22. 
    Given triangle ABC= triangle FGH, which angle is congruent to angle B?
    • A. 

      Angle G

    • B. 

      Angle F

    • C. 

      Angle H

  • 23. 
    SSA is an acceptable theorem to prove triangles are congruent.
    • A. 

      True

    • B. 

      False

  • 24. 
    Which of the following congruence postulates and theorems are true? (multiple answers)
    • A. 

      SSS

    • B. 

      SSA

    • C. 

      SAS

    • D. 

      AAS

    • E. 

      ASA

    • F. 

      AAA

  • 25. 
    Solve for x.  (Remember figures may not be drawn to scale.  Do not assume.)
    • A. 

      180 degrees

    • B. 

      120 degrees

    • C. 

      90 degrees

    • D. 

      60 degrees

    • E. 

      Cannot be determined

  • 26. 
    Classify this triangle (by angles and sides... so select 2 answers).
    • A. 

      Acute

    • B. 

      Right

    • C. 

      Obtuse

    • D. 

      Equilateral

    • E. 

      Isosceles

    • F. 

      Scalene

    • G. 

      Cannot be determined

  • 27. 
    Which of the 9 possible triangle classifications cannot be drawn on a 2-dimensional surface?  (there may be more than one correct answer)
    • A. 

      Acute scalene

    • B. 

      Acute isosceles

    • C. 

      Acute equilateral

    • D. 

      Right scalene

    • E. 

      Right isosceles

    • F. 

      Right equilateral

    • G. 

      Obtuse scalene

    • H. 

      Obtuse isosceles

    • I. 

      Obtuse equilateral

    • J. 

      All 9 of these are possible on a flat surface

  • 28. 
    Given a triangle with side lengths of 20, 13, and 18...   which is the biggest angle in the triangle?
    • A. 

      The angle opposite the 20 side

    • B. 

      The angle opposite the 13 side

    • C. 

      The angle opposite the 18 side

    • D. 

      It cannot be determined.

  • 29. 
    Given a triangle with side lengths of 3, 4, and 4.9    classify the triangle by its angles.  This is a question we have not covered, but you can figure it out. (hint: think about a 3-4-5 right triangle)
    • A. 

      Acute

    • B. 

      Right

    • C. 

      Obtuse

  • 30. 
    Given the two pairs of congruent markings so far, which of the following pairs of congruent corresponding parts would NOT be helpful in trying to prove the two triangles congruent?
    • A. 

      Sides on the left

    • B. 

      Sides on the bottom

    • C. 

      Angles on the bottom left

    • D. 

      Angles on the bottom right

  • 31. 
    which pair of triangles would you use ASA to prove the congruence of the 2 triangles?
    • A. 

      A

    • B. 

      B

    • C. 

      C

    • D. 

      D

  • 32. 
    These two triangles are congruent by the _______________.
    • A. 

      SAS Postulate

    • B. 

      SSA Postulate

    • C. 

      SSS Postulate

    • D. 

      ASA Postulate

  • 33. 
       
    • A. 

      SAS Postulate

    • B. 

      ASA Postulate

    • C. 

      AAA Postulate

    • D. 

      SSS Postulate

  • 34. 
     Which postulate or theorem shows that 
    • A. 

      ASA Postulate

    • B. 

      SAS Postulate

    • C. 

      SSS Postulate

    • D. 

      AAS Theorem

  • 35. 
       Refer to the figure. Complete the congruence statement  
    • A. 

      Triangle VTU

    • B. 

      Triangle TUV

    • C. 

      Triangle VUT

    • D. 

      Triangle UTV

  • 36. 
    What congruence postulate can be used to prove that the two triangles are congruent? 
    • A. 

      ASA

    • B. 

      AAS

    • C. 

      SAS

  • 37. 
    What congruence postulate can be used to prove that the two triangles are congruent?
    • A. 

      SSS

    • B. 

      AAS

    • C. 

      ASA

  • 38. 
    Absent any markings on the two triangles, which of these can be observed simply by looking at any figure?
    • A. 

      Congruent angles via parallel sides (alternate interior angles)

    • B. 

      Congruent sides via shared side (reflexive property)

    • C. 

      Congruent angles via perpendicular sides (right angles)

    • D. 

      Congruent sides via midpoint (definition of midpoint)

    • E. 

      Congruent angles via angle bisector (definition of angle bisector)

  • 39. 
    Why do the angles of a triangle add up to 180 degrees?
    • A. 

      They just do

    • B. 

      It torn off a triangle and placed adjacent to each other with a common vertex, they would form a line (which is 180 degrees)

    • C. 

      It is half a circle

  • 40. 
    Why are are the base angles of an isosceles triangle congruent?
    • A. 

      If folded in half, they based angles would match up perfectly

    • B. 

      They just are

  • 41. 
    Which one do you like?
    • A. 

      Option 1

    • B. 

      Option 2

    • C. 

      Option 3

    • D. 

      Option 4

  • 42. 
    What does CPCTC stand for?
  • 43. 
    When given a midpoint, the follow step on a proof should be...
    • A. 

      2 congruent sides

    • B. 

      2 congruent angles

    • C. 

      2 congruent triangles

    • D. 

      Option 4

  • 44. 
    You and a friend each build a triangle using 3 toothpicks (assume they are all the same size). Which of the following describes the triangles you create?  (Multiple answers)
    • A. 

      Congruent (due to SAS)

    • B. 

      Congruent (due to SSS)

    • C. 

      Equilateral

    • D. 

      Equiangular

    • E. 

      Acute