Ulangan Persamaan Dan Pertidaksamaan Linear Dan Kuadrat

Reviewed by Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Abuazam
A
Abuazam
Community Contributor
Quizzes Created: 1 | Total Attempts: 475
| Attempts: 475 | Questions: 10
Please wait...
Question 1 / 10
0 %
0/100
Score 0/100
1. Penyelesaian dari 4x + 5 = 3x + 9 adalah ....

Explanation

Selamat Anda sudah menyelesaikan soal ini!

Submit
Please wait...
About This Quiz
Ulangan Persamaan Dan Pertidaksamaan Linear Dan Kuadrat - Quiz

Selamat mengerjakan soal-soal ulangan ini. Semoga sukses dan selamat mengerjakan!
Jangan lupa berdoa ya!

2. Nilai p dari bentuk 5(p-3)-2(p-3)=12 adalah ....

Explanation

Terima kasih sudah menjawab soal ini!

Submit
3. Jawablah pertanyaannya :)

Explanation

Sukses ya :)

Submit
4. Bila x1 dan x2 adalah akar-akar persamaan kuadrat x2 – 6x – 5 = 0, maka x12 + x22 = ....

Explanation

Terima kasih sudah menjawab soal ini. Semangat!

Submit
5. Jika akar-akar persamaan kuadrat adalah    1 dan -2, maka persamaan kuadrat tersebut adalah ....

Explanation

Hebat. Sudah menyelesaikan soal ini!

Submit
6. Himpunan penyelesaian dari x2 + x – 12  = 0 adalah ....

Explanation

The given equation is a quadratic equation in the form of ax^2 + bx + c = 0. By factoring or using the quadratic formula, we can find the solutions for x. In this case, the equation can be factored as (x - 3)(x + 4) = 0. Setting each factor equal to zero, we get x - 3 = 0 and x + 4 = 0. Solving these equations, we find that x = 3 and x = -4. Therefore, the solution set for the equation x^2 + x - 12 = 0 is {3, -4}.

Submit
7. Himpunan penyelesaian dari 2x + 3 < 27 + 4x dengan x anggota bilangan bulat adalah ....

Explanation

The inequality 2x + 3 -12. Therefore, the solution set for the given inequality is x > -12.

Submit
8. Himpunan penyelesaian dari pertidaksamaan kuadrat x2 – 6x + 8 > 0   adalah ....

Explanation

Selamat Anda sudah menyelesaikan soal ini. Semangat ya!

Submit
9. Persamaan (m + 2) x2 + 6x + 3m = 0 mempunyai akar real, maka nilai m adalah ...

Explanation

Terima kasih sudah mengerjakan soal ini!

Submit
10. Jika salah satu akar persamaan kuadrat   ax2 + 5x – 12 = 0 adalah -12, maka ...

Explanation

The given equation is a quadratic equation in the form of ax^2 + bx + c = 0. We are given that one of the roots is -12. According to the Vieta's formulas, the sum of the roots of a quadratic equation is equal to -b/a. In this case, the sum of the roots is -12 + x, where x is the other root. Therefore, we can write the equation as -12 + x = -5/a. Solving for x, we get x = 2. Hence, the other root is 2. We are also given that a = 1/2. Therefore, the correct answer is a = 1/2 ; akar yang lain 2.

Submit
View My Results

Quiz Review Timeline (Updated): Jul 22, 2024 +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Jul 22, 2024
    Quiz Edited by
    ProProfs Editorial Team
  • Feb 07, 2017
    Quiz Created by
    Abuazam
Cancel
  • All
    All (10)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
Penyelesaian dari 4x + 5 = 3x + 9 adalah ....
Nilai p dari bentuk 5(p-3)-2(p-3)=12 adalah ....
Jawablah pertanyaannya :)
Bila x1 dan x2 adalah akar-akar persamaan kuadrat x2 – 6x...
Jika akar-akar persamaan kuadrat adalah    1 dan -2,...
Himpunan penyelesaian dari x2 + x – 12  = 0 adalah ....
Himpunan penyelesaian dari 2x + 3 < 27 + 4x dengan x anggota...
Himpunan penyelesaian dari pertidaksamaan kuadrat x2 – 6x + 8...
Persamaan (m + 2) x2 + 6x + 3m = 0 mempunyai akar real, maka nilai m...
Jika salah satu akar persamaan kuadrat   ax2 + 5x – 12...
Alert!

Advertisement