# Ulangan Persamaan Dan Pertidaksamaan Linear Dan Kuadrat

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
| By Abuazam
A
Abuazam
Community Contributor
Quizzes Created: 1 | Total Attempts: 445
Questions: 12 | Attempts: 446

Settings

Selamat mengerjakan soal-soal ulangan ini. Semoga sukses dan selamat mengerjakan!Jangan lupa berdoa ya!

• 1.

• 2.

• 3.

### Nilai p dari bentuk 5(p-3)-2(p-3)=12 adalah ....

• A.

1

• B.

3

• C.

5

• D.

6

• E.

7

E. 7
Explanation
Terima kasih sudah menjawab soal ini!

Rate this question:

• 4.

### Himpunan penyelesaian dari 2x + 3 < 27 + 4x dengan x anggota bilangan bulat adalah ....

• A.

X>12

• B.

X

• C.

X>-12

• D.

X

• E.

X

C. X>-12
Explanation
The inequality 2x + 3 < 27 + 4x can be simplified by subtracting 2x from both sides, resulting in 3 < 27 + 2x. Then, subtracting 27 from both sides gives -24 < 2x. Finally, dividing both sides by 2 gives -12 < x, which can be written as x > -12. Therefore, the solution set for the given inequality is x > -12.

Rate this question:

• 5.

### Jawablah pertanyaannya :)

• A.

Option 1

• B.

Option 2

• C.

Option 3

• D.

Option 4

C. Option 3
Explanation
Sukses ya :)

Rate this question:

• 6.

### Himpunan penyelesaian dari x2 + x – 12  = 0 adalah ....

• A.

{3,-4}

• B.

{-3,4}

• C.

{-3,-4}

• D.

{3,4}

• E.

{3,2}

A. {3,-4}
Explanation
The given equation is a quadratic equation in the form of ax^2 + bx + c = 0. By factoring or using the quadratic formula, we can find the solutions for x. In this case, the equation can be factored as (x - 3)(x + 4) = 0. Setting each factor equal to zero, we get x - 3 = 0 and x + 4 = 0. Solving these equations, we find that x = 3 and x = -4. Therefore, the solution set for the equation x^2 + x - 12 = 0 is {3, -4}.

Rate this question:

• 7.

### Jika salah satu akar persamaan kuadrat   ax2 + 5x – 12 = 0 adalah -12, maka ...

• A.

A = -½ ; akar yang lain 4

• B.

A = -½ ; akar yang lain 6

• C.

A = ½ ; akar yang lain -2

• D.

A = ½ ; akar yang lain 2

• E.

A = 2 ; akar yang lain -4

D. A = ½ ; akar yang lain 2
Explanation
The given equation is a quadratic equation in the form of ax^2 + bx + c = 0. We are given that one of the roots is -12. According to the Vieta's formulas, the sum of the roots of a quadratic equation is equal to -b/a. In this case, the sum of the roots is -12 + x, where x is the other root. Therefore, we can write the equation as -12 + x = -5/a. Solving for x, we get x = 2. Hence, the other root is 2. We are also given that a = 1/2. Therefore, the correct answer is a = 1/2 ; akar yang lain 2.

Rate this question:

• 8.

### Bila x1 dan x2 adalah akar-akar persamaan kuadrat x2 – 6x – 5 = 0, maka x12 + x22 = ....

• A.

26

• B.

37

• C.

41

• D.

46

• E.

56

D. 46
Explanation
Terima kasih sudah menjawab soal ini. Semangat!

Rate this question:

• 9.

• A.

X^2 – x – 2 = 0

• B.

X^2 + x – 2 = 0

• C.

X^2 – 2 = 0

• D.

X^2 – x + 2 = 0

• E.

X^2 + x + 2 = 0

B. X^2 + x – 2 = 0
Explanation
Hebat. Sudah menyelesaikan soal ini!

Rate this question:

• 10.

### Himpunan penyelesaian dari pertidaksamaan kuadrat x2 – 6x + 8 > 0   adalah ....

• A.

{x | 2 < x < 4}

• B.

{x | -4 < x < 2}

• C.

{x | x < -4 atau x > 4}

• D.

{x | x < 2 atau x > 4}

• E.

{x | x < -4 atau x > -1}

D. {x | x < 2 atau x > 4}
Explanation
Selamat Anda sudah menyelesaikan soal ini. Semangat ya!

Rate this question:

• 11.

### Persamaan (m + 2) x2 + 6x + 3m = 0 mempunyai akar real, maka nilai m adalah ...

• A.

Opsi 1

• B.

Opsi 2

• C.

Opsi 3

• D.

Opsi 4

• E.

Opsi 5

E. Opsi 5
Explanation
Terima kasih sudah mengerjakan soal ini!

Rate this question:

• 12.

• A.

2

• B.

4

• C.

7

• D.

8

• E.

10