The given equation is in the vertex form of a parabola, which is y = a(x - h)^2 + k. In this equation, the vertex of the parabola is represented by the point (h, k).
Comparing the given equation y = 2(x - 3)^2 - 2 with the vertex form, we can see that the vertex of the parabola is at the point (3, -2). The coefficient "2" in front of the (x - 3)^2 term indicates that the parabola is stretched vertically. Since the coefficient is positive, the parabola opens upward. Therefore, the equation y = 2(x - 3)^2 - 2 represents a parabola with its vertex at (3, -2), opening upward, and stretched vertically.