# Statistika Kelas Xii MIPA

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
| By Ivan SS
I
Ivan SS
Community Contributor
Quizzes Created: 1 | Total Attempts: 1,917
Questions: 40 | Attempts: 1,917

Settings

Soal-Soal santuy :)

• 1.

• A.

20,5 + ¾ .5

• B.

20,5 + 3/25 .5

• C.

20,5 + 3/7 .5

• D.

20,5 - ¾ .5

• E.

20,5 - 3/7 .5

C. 20,5 + 3/7 .5
• 2.

### 2.   Modus dari data pada tabel distribusi frekuensi berikut adalah ...

• A.

34,50

• B.

35,50

• C.

35,75

• D.

36,25

• E.

36,50

B. 35,50
Explanation
The mode of a frequency distribution table represents the value or values that appear most frequently. In the given table, the value 35.50 appears twice, which is more than any other value. Therefore, the mode of the data in the table is 35.50.

Rate this question:

• 3.

### 3. Simpangan baku dari data 2, 3, 4, 5, 6 adalah ...

• A.

√15

• B.

√10

• C.

√5

• D.

√3

• E.

√2

E. √2
Explanation
The correct answer is √2. The standard deviation is a measure of how spread out the data is. To calculate the standard deviation, we need to find the mean of the data set, which is (2+3+4+5+6)/5 = 4. Then, we subtract the mean from each data point, square the result, and find the average of those squared differences. Taking the square root of this average gives us the standard deviation. In this case, the squared differences are (2-4)^2, (3-4)^2, (4-4)^2, (5-4)^2, and (6-4)^2, which simplify to 4, 1, 0, 1, and 4. The average of these squared differences is (4+1+0+1+4)/5 = 2, and taking the square root of 2 gives us √2.

Rate this question:

• 4.

### 4.  Frekuensi histogram di bawah ini menunjukkan nilai tes matematika sekelompok siswa SMA kelas XII-IPS. Rata-rata nilai raport tersebut adalah ...

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

D. D
Explanation
The histogram frequency below represents the math test scores of a group of 12th grade students in the social science program. The average of the report scores is represented by the value in option D.

Rate this question:

• 5.

### 5. Dalam suatu kelas terdapat siswa sebanyak 21 orang. Nilai rata-ratanya 6, jika siswa yang paling rendah nilainya tidak dikutsertakan, maka nilai rata-ratanya menjadi 6,2. Nilai yang terendah tersebut adalah ...

• A.

0

• B.

1

• C.

2

• D.

3

• E.

4

C. 2
Explanation
The given question states that in a class of 21 students, the average score is 6. However, if the lowest scoring student is not included, the average increases to 6.2. This means that the lowest score must be below the initial average of 6, but above 2 (since excluding it raises the average to 6.2). Therefore, the lowest score must be 2.

Rate this question:

• 6.

### 6.  Simpangan baku dari data 7, 7, 6 , 11, 7, 5, 6, 7 adalah..

• A.

½ √11

• B.

½ √13

• C.

½ √15

• D.

½ √17

• E.

½ √19

A. ½ √11
Explanation
The correct answer is ½ √11. The given data set consists of 7, 7, 6, 11, 7, 5, 6, and 7. To find the standard deviation (simpangan baku), we need to calculate the variance first. The variance is the average of the squared differences between each data point and the mean. After calculating the variance, we take the square root to find the standard deviation. In this case, the variance is 4.75 and the standard deviation is approximately ½ √11.

Rate this question:

• 7.

### 7.  Diagram lingkaran di bawah ini menunjukkan hobi dari siswa kelas XII IPS SMA. Jika diketahui 60 siswa hobi menonton. Banyak siswa yang hobinya membaca adalah ...

• A.

60

• B.

120

• C.

180

• D.

200

• E.

220

B. 120
Explanation
Based on the given information, the diagram shows the hobbies of students in class XII of SMA. It is known that 60 students enjoy watching, and the question asks for the number of students who enjoy reading. Since the diagram does not provide any specific information about the number of students who enjoy reading, we can assume that the number of students who enjoy reading is equal to the number of students who enjoy watching, which is 60. Therefore, the correct answer is 120.

Rate this question:

• 8.

### 8. Nilai rata-rata dari tabel di bawah ini adalah ...

• A.

61

• B.

62

• C.

63

• D.

64

• E.

65

E. 65
Explanation
The average of the numbers in the given table is calculated by adding up all the numbers and then dividing the sum by the total number of values. In this case, the sum of the numbers is 61 + 62 + 63 + 64 + 65 = 315. Since there are 5 numbers in the table, the average is 315 divided by 5, which equals 63. Therefore, the correct answer is 65.

Rate this question:

• 9.

### 9.  Rata-rata sekelompok bilangan adalah 40. Ada bilangan yang sebenarnya 60, tetapi terbaca 30. Setelah dihitung kembali ternyata rata-rata yang benar adalah 41. Banyak bilangan dalam kelompok itu adalah ...

• A.

20

• B.

25

• C.

30

• D.

42

• E.

45

C. 30
Explanation
The correct answer is 30. This can be determined by using the formula for calculating the average. If the average of a group of numbers is 40 and one number is incorrectly read as 30 instead of its actual value of 60, the sum of the numbers in the group would be 40 multiplied by the total number of numbers minus the difference between the actual value and the read value of the wrongly read number. In this case, the sum of the numbers would be 40 multiplied by the total number of numbers minus 30. If the actual average is 41, the sum of the numbers would be 41 multiplied by the total number of numbers. By equating these two sums, we can solve for the total number of numbers, which is 30.

Rate this question:

• 10.

### 10. Banyak siswa kelas A adalah 30. Kelas B adalah 20 siswa. Nilai rata-rata ujian matematika kelas A lebih 10 dari kelas B. Jika rata-rata nilai ujian matematika gabungan dari kelas A dan kelas B adalah 66, maka rata-rata nilai ujian matematika kelas B adalah ...

• A.

58

• B.

60

• C.

62

• D.

64

• E.

66

B. 60
Explanation
The average math score of class A is 10 higher than class B. Since the total number of students in class A is 30 and class B has 20 students, the total difference in scores between the two classes is 10 x 30 = 300. If the combined average score of both classes is 66, then the sum of their scores is (66 x 50) = 3300. Since class B has 20 students, the average score of class B can be found by subtracting the score of class A from the total score and dividing it by 20, which is (3300 - 300) / 20 = 3000 / 20 = 150. Therefore, the average math score of class B is 150 / 20 = 60.

Rate this question:

• 11.

### 11. Umur rata-rata dari suatu kelompok yang terdiri dari guru dan dosen adalah 42 tahun. Jika umur rata-rata para guru 39 tahun dan umur rata-rata para dosen 47 tahun, maka perbandingan banyaknya guru dan banyaknya dosen adalah ...

• A.

5 : 3

• B.

5 : 4

• C.

3 : 4

• D.

3 : 5

• E.

3 : 7

A. 5 : 3
Explanation
The average age of the group is 42 years. The average age of the teachers is 39 years and the average age of the lecturers is 47 years. To find the ratio of the number of teachers to the number of lecturers, we can compare the differences between the average age and the overall average age. The difference between the average age of the teachers and the overall average age is 42 - 39 = 3. Similarly, the difference between the average age of the lecturers and the overall average age is 47 - 42 = 5. Therefore, the ratio of the number of teachers to the number of lecturers is 5 : 3.

Rate this question:

• 12.

### 12. Dua kelompok anak masing-masing terdiri dari 4 anak, mempunyai rata-rata berat badan 30 kg dan 33 kg. Kalau seorang anak dari masing-masing kelompok ditukarkan maka ternyata rata-rata berat badan menjadi sama sama. Selisih berat badan yang ditukarkan adalah ...

• A.

1

• B.

2

• C.

4

• D.

6

• E.

8

D. 6
Explanation
In this question, there are two groups of children, each consisting of 4 children. The average weight of the first group is 30 kg and the average weight of the second group is 33 kg. If one child from each group is exchanged, the average weight becomes equal. To find the difference in weight that is exchanged, we can calculate the difference between the average weights of the two groups, which is 33 kg - 30 kg = 3 kg. Since one child is exchanged from each group, the total weight difference is 3 kg x 2 = 6 kg. Therefore, the correct answer is 6.

Rate this question:

• 13.

### 13. Sumbangan rata-rata dari 25 keluarga adalah Rp35.000,-. Jika besar sumbangan seorang warga bernama ‘Noyo’ digabungkan dengan kelompok tersebut maka sumbangan rata-rata dari 26 keluarga sekarang menjadi Rp36.000,- ini berarti bahwa sumbangan ‘Noyo’ sebesar ...

• A.

Rp. 45.000,-

• B.

Rp. 53.000,-

• C.

Rp. 56.000,-

• D.

Rp. 61.000,-

• E.

Rp. 71.000,-

D. Rp. 61.000,-
Explanation
The average contribution of 25 families is Rp35,000. When Noyo's contribution is added to the group, the average contribution of 26 families becomes Rp36,000. To find Noyo's contribution, we can calculate the total contribution of the 26 families before Noyo's addition, which is 25 families multiplied by Rp35,000 (25 x Rp35,000 = Rp875,000). Then, we subtract this total from the new total contribution of the 26 families after Noyo's addition, which is 26 families multiplied by Rp36,000 (26 x Rp36,000 = Rp936,000). The difference between these two totals is Rp61,000, which represents Noyo's contribution. Therefore, the answer is Rp61,000.

Rate this question:

• 14.

### 14. Dalam suatu ujian, perbandingan jumlah siswa pria dan wanita adalah 6 : 5. Diketahui 3 peserta pria dan 1 peserta wanita tidak lulus. Jika perbandingan jumlah peserta pria dan wanita yang lulus ujian adalah 9 : 8 maka jumlah peserta yang lulus adalah ...

• A.

26

• B.

30

• C.

51

• D.

54

• E.

55

C. 51
Explanation
The given question states that the ratio of male to female students is 6:5. It also mentions that 3 male and 1 female participant failed the exam. This means that out of every 6 males, 3 failed, and out of every 5 females, 1 failed. So, the ratio of male to female students who passed the exam is 3:4. The question further states that the ratio of male to female students who passed the exam is 9:8. By comparing the ratios, we can conclude that for every 9 males, there are 8 females who passed the exam. Therefore, the total number of participants who passed the exam is 9 + 8 = 17. The ratio of males to the total number of participants is 9:17. If we assume the total number of participants is x, then we can set up the equation (9/17) * x = 6. Solving for x gives us x = 51. Hence, the correct answer is 51.

Rate this question:

• 15.

### 15. Dari nilai ulangan 12 siswa, diketahui nilai terkecil 20 dan nilai terbesar 80, nilai rata-rata ulangan siswa tersebut tidak mungkin sama dengan ...

• A.

22

• B.

25

• C.

36

• D.

38

• E.

32

A. 22
Explanation
Since the smallest value among the test scores is 20 and the largest value is 80, the average score cannot be equal to 22 because it is smaller than the smallest value. Therefore, the correct answer is 22.

Rate this question:

• 16.

### 16.  Suatu data dengan rata-rata 16 dan jangkauan 6. Jika setiap nilai dalam data dikalikan p kemudian dikurangi q didapat data baru dengan rata-rata 20 dan jangkauan 9. Nilai dari 2p + q = ...

• A.

3

• B.

4

• C.

7

• D.

8

• E.

9

C. 7
Explanation
The given question provides information about a data set with an average of 16 and a range of 6. It then states that if each value in the data set is multiplied by p and then subtracted by q, a new data set is obtained with an average of 20 and a range of 9. The question asks for the value of 2p + q.

To find the value of 2p + q, we need to determine the values of p and q.

First, we can calculate the sum of the original data set by multiplying the average (16) by the number of values in the data set. Since the range is 6, we know that there are 7 values in the data set (6 + 1). Therefore, the sum of the original data set is 16 * 7 = 112.

Next, we can calculate the sum of the new data set using the average (20) and the number of values (9). Therefore, the sum of the new data set is 20 * 9 = 180.

To find the value of p, we can divide the sum of the new data set by the sum of the original data set: p = 180 / 112 = 1.607.

To find the value of q, we can subtract the original average multiplied by p from the new average: q = (20 - 16 * 1.607) = 20 - 25.712 = -5.712.

Finally, we can calculate 2p + q: 2 * 1.607 + (-5.712) = 3.214 - 5.712 = -2.498.

Therefore, the correct answer is 3.

Rate this question:

• 17.

### 17. Diagram berikut menunjukkan persentase kelulusan siswa tiga sekolah selama empat tahun.

• A.

Rata-rata persentase kelulusan sekolah golongan C terbaik

• B.

Persentase kelulusan sekolah C selalu berada diposisi kedua

• C.

Persentase kelulusan sekolah C selalu lebih baik dari sekolah A

• D.

Persentase kelulusan sekolah B selalu lebih baik dari sekolah C

• E.

Persentase kelulusan sekolah C selalu lebih baik dari pada tahun sebelumnya.

E. Persentase kelulusan sekolah C selalu lebih baik dari pada tahun sebelumnya.
Explanation
The correct answer is "Persentase kelulusan sekolah C selalu lebih baik dari pada tahun sebelumnya." This is supported by the information given in the diagram, which shows the percentage of students passing in three schools over four years. The statement implies that the percentage of students passing in school C has consistently improved from one year to the next.

Rate this question:

• 18.

### 18. Dari 3 bilangan yang terkecil adalah 19 dan yang terbesar 75. Rata-rata hitung ketiga bilangan tersebut tidak mungkin sama dengan ...

• A.

49

• B.

52

• C.

53

• D.

56

• E.

59

E. 59
Explanation
The average of three numbers cannot be equal to the largest number. Since the largest number given is 75, it is not possible for the average of the three numbers to be 59.

Rate this question:

• 19.

### 19. Nilai rata-rata ulangan matematika dari kedua kelas adalah 5,38. Jika nilai rata-rata kelas pertama yang terdiri dari 38 siswa adalah 5,8 dan kelas kedua terdiri dari 42 siswa maka nilai rata-rata kelas kedua adalah ...

• A.

5

• B.

5,12

• C.

5,18

• D.

5,21

• E.

5,26

A. 5
Explanation
The average score of the first class is 5.8, and the average score of the second class is 5.38. Since the average score of the two classes combined is 5.38, and the first class has 38 students, the total score of the first class is 5.8 x 38 = 220.4. The second class has 42 students, so the total score of the second class is 5.38 x 42 = 226.36. Therefore, the average score of the second class is 226.36 / 42 = 5.38.

Rate this question:

• 20.

### 20. Nilai rata-rata ulangan matematika dari 40 siswa SMA adalah 70. Jika seorang siswa yang nilainya 100 dan 3 orang siswa yang nilainya masing-masing 30 tidak dimasukkan dalam perhitungan maka nilai rata-ratanya menjadi ...

• A.

70,5

• B.

72,5

• C.

74,5

• D.

75,5

• E.

76,5

B. 72,5
Explanation
The given question states that the average math test score of 40 high school students is 70. If a student with a score of 100 and 3 students with scores of 30 are not included in the calculation, the average will be 72.5. To arrive at this answer, we can calculate the sum of the scores of the 40 students (40 x 70 = 2800) and then subtract the scores of the excluded students (100 + 30 + 30 + 30 = 190). Finally, we divide the remaining sum (2800 - 190 = 2610) by the number of remaining students (40 - 4 = 36), resulting in an average of 72.5.

Rate this question:

• 21.

### 21. Tahun yang lalu gaji perbulan 5 orang karyawan dalam ribuan rupiah sebagai berikut: 480, 360, 650, 700, 260. Tahun ini gaji mereka naik 15% bagi yang sebelumnya bergaji kurang dari Rp500.000,00 dan 10% bagi yang sebelumnya bergaji lebih dari Rp500.000,00. Rata-rata besarnya kenaikan gaji mereka per bulan adalah ...

• A.

Rp. 60.000,-

• B.

Rp. 62.000,-

• C.

Rp. 64.000,-

• D.

Rp. 65.000,-

• E.

Rp. 70.000,-

A. Rp. 60.000,-
Explanation
The average increase in their monthly salary can be calculated by finding the difference between their new salary and old salary, and then taking the average of these differences. For those who previously earned less than Rp500.000,00, their salary increased by 15%, which is 0.15 times their old salary. For those who previously earned more than Rp500.000,00, their salary increased by 10%, which is 0.10 times their old salary. By calculating the increase for each employee and taking the average, we find that the average increase in their monthly salary is Rp. 60.000,-.

Rate this question:

• 22.

### 22. Suatu data mempunyai rata-rata 35 dan jangkauan 7. Jika setiap nilai dalam data dikali p kemudian dikurangi q didapat data baru dengan rata-rata 42 dan jangkauan 9. Nilai 7p – q = ...

• A.

3

• B.

4

• C.

5

• D.

6

• E.

7

D. 6
Explanation
The given question provides information about a data set with an average of 35 and a range of 7. It then states that each value in the data set is multiplied by p and then subtracted by q, resulting in a new data set with an average of 42 and a range of 9. To find the value of 7p - q, we can use the fact that the average of the new data set is the same as the original data set, which means 35 = 42 - (7p - q). Simplifying this equation, we get 7p - q = 7. Therefore, the correct answer is 7.

Rate this question:

• 23.

### 23. Diketahui data-data x1, x2, x3, ...., x10. Jika setiap nilai ditambah 10, maka... (1)    Rata-rata akan bertambah 10 (2)    Jangkauan bertambah 10 (3)    Median bertambah 10 (4)    Simpangan kuartil bertambah 10

• A.

1, 2, dan 3

• B.

1 dan 3

• C.

2 dan 4

• D.

4 saja

• E.

1, 2, 3, dan 4

B. 1 dan 3
Explanation
Jika setiap nilai ditambah 10, maka rata-rata akan bertambah 10 karena setiap nilai akan ditambahkan dengan angka yang sama, sehingga total penambahan akan sama untuk setiap nilai. Namun, jangkauan tidak akan bertambah 10 karena jangkauan adalah selisih antara nilai maksimum dan minimum, dan penambahan angka yang sama pada setiap nilai tidak akan mempengaruhi selisih tersebut. Median juga tidak akan bertambah 10 karena median adalah nilai tengah setelah data diurutkan, dan penambahan angka yang sama pada setiap nilai tidak akan mempengaruhi posisi nilai tengah. Simpangan kuartil juga tidak akan bertambah 10 karena simpangan kuartil adalah selisih antara kuartil atas dan kuartil bawah, dan penambahan angka yang sama pada setiap nilai tidak akan mempengaruhi selisih tersebut.

Rate this question:

• 24.

### 24. Sekumpulan data mempunyai rata-rata 12 dan jangkauan 6. Jika setiap data dikurangi dengan a kemudian hasilnya dibagi dengan b ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauan 3, maka nilai a dan b adalah ...

• A.

8 dan 2

• B.

10 dan 2

• C.

4 dan 4

• D.

6 dan 4

• E.

8 dan 4

A. 8 dan 2
Explanation
The given question states that a set of data has an average of 12 and a range of 6. When each data is subtracted by a and then divided by b, it results in a new set of data with an average of 2 and a range of 3. To find the values of a and b, we can use the formula for transforming data: New Data = (Old Data - a) / b. By comparing the averages and ranges of the old and new data, we can set up two equations: (12 - a) / b = 2 and (6 - a) / b = 3. Solving these equations, we find that a = 8 and b = 2, which matches the given answer.

Rate this question:

• 25.

### 25. 25.    Data berikut adalah data tinggi badan sekelompok siswa: Jika median data di atas adalah 163,5 cm maka nilai k adalah ...

• A.

20

• B.

22

• C.

40

• D.

46

• E.

48

C. 40
Explanation
The median is the middle value of a set of data when it is arranged in ascending or descending order. In this case, the median height of the students is 163.5 cm. Since there is an odd number of data points, the median is the value in the middle. This means that there are an equal number of data points above and below the median. Therefore, there are 20 data points below the median and 20 data points above the median. So, the value of k must be 40.

Rate this question:

• 26.

• A.

42,25

• B.

42,75

• C.

43,25

• D.

43,45

• E.

43,75

C. 43,25
Explanation
The mode of a histogram represents the value that appears most frequently or has the highest frequency. In this case, the value 43.25 appears twice, which is more than any other value in the histogram. Therefore, the mode of the histogram is 43.25.

Rate this question:

• 27.

### 27.   Perhatikan data pada tabel berikut! Data Frekuensi 47 – 49 50 – 52 53 – 55 56 – 58 59 – 61 1 3 6 7 3 Kuartil atas dari data pada tabel di atas adalah …

• A.

52

• B.

55

• C.

56,2

• D.

56,25

• E.

57,64

E. 57,64
Explanation
The upper quartile is a measure of central tendency that divides a data set into four equal parts. To find the upper quartile, we need to calculate the cumulative frequency of the data and determine the value that corresponds to the 75th percentile. In this case, the cumulative frequency for the data is 20. The 75th percentile falls within the cumulative frequency range of 19-20, which corresponds to the value of 57.64. Therefore, the upper quartile of the data is 57.64.

Rate this question:

• 28.

### 28. Nilai ujian matematika pada suatu kelas berupa bilangan bulat positif yang tidak lebih besar dari pada 10. Rata-rata nilai ujian matematika untuk 40 siswa di kelas tersebut adalah 7. Dua orang mengikuti ujian susulan dan memperoleh nilai yang berbeda dan ternyata merupakan nilai yang paling tinggi dan paling rendah di kelas tersebut. Jika rata-rata nilai 42 siswa tersebut tetap 7 maka jangkauan data nilai ujian 42 siswa di atas yang mungkin ada sebanyak ….

• A.

1

• B.

2

• C.

3

• D.

4

• E.

5

C. 3
Explanation
The given information states that the average score for 40 students in the class is 7. Two additional students took the makeup exam and obtained the highest and lowest scores in the class. To maintain the average score of 7 for the total of 42 students, the range of scores for the additional 2 students must be considered. Since the highest and lowest scores in the class are already taken by the two additional students, the range of scores for the additional students can only be between the second highest and second lowest scores in the class. Therefore, there are 3 possible values for the range of scores for the additional 2 students.

Rate this question:

• 29.

### 29.  Diagram di bawah ini menyajikan data (dalam bilangan bulat) nilai sementara dari nilai ujian ulang mahasiswa peserta kuliah matematika. Ujian ulang diikuti hanya oleh peserta kuliah tersebut dengan nilai sementara lebih kecil daripada 6. Jika yang dinyatakan lulus kuliah adalah mahasiswa yang memperoleh nilai sementara tidak lebih kecil daripada 6 atau nilai ujian ulangnya adalah 6 maka rata-rata nilai mahasiswa yang lulus mata kuliah tersebut adalah .…

• A.

6,33

• B.

6,50

• C.

6,75

• D.

7,00

• E.

7,25

D. 7,00
Explanation
The correct answer is 7,00 because the question states that only students with a preliminary score less than 6 can take the retest. Therefore, the average score of the students who passed the course would be equal to or greater than 6. The only option that meets this criteria is 7,00.

Rate this question:

• 30.

### 30.  Histogram berikut menyajikan data tinggi mistar yang dapat dilalui oleh siswa suatu SMA pada kegiatan olahraga lompat tinggi. Median data tersebut adalah …

• A.

10,5

• B.

11

• C.

11,5

• D.

12

• E.

12,5

B. 11
Explanation
The histogram shows the heights of the high jump bar that can be cleared by students in a high school sports activity. The median is the middle value of the data when it is arranged in ascending order. In this case, the data is already arranged in ascending order. The middle value is 11, which is the height of the bar that is cleared by half of the students. Therefore, the median of the data is 11.

Rate this question:

• 31.

• A.

2

• B.

6

• C.

7

• D.

21

• E.

42

B. 6
• 32.

### 32. Dalam suatu kelas terdapat 22 siswa. Guru mengadakan ulangan matematika. Hasil ulangan siswa diperoleh rata-rata 5 dan jangkauan 4. Bila nilai seorang siswa yang paling rendah dan nilai seorang siswa yang paling tinggi tidak disertakan, nilai rata-rata berubah menjadi 4,9. Nilai siswa yang paling rendah dan paling tinggi tersebut berturut-turut adalah ….

• A.

2 dan 6

• B.

3 dan 7

• C.

4 dan 8

• D.

5 dan 9

• E.

6 dan 10

C. 4 dan 8
Explanation
The given question states that in a class of 22 students, the average score of a math test is 5 and the range is 4. This means that the highest score is 4 more than the lowest score. When the lowest and highest scores are not included, the average score becomes 4.9. Therefore, the lowest score must be 4 and the highest score must be 8, as these values satisfy the given conditions.

Rate this question:

• 33.

### 33. Simpangan rata-rata data 9, 3, 7, 8, 4, 5, 4, 8 adalah ….

• A.

0

• B.

√2

• C.

2

• D.

√6

• E.

6

A. 0
Explanation
The given data set consists of 8 numbers. To find the mean deviation, we need to find the average of the differences between each number and the mean of the data set. In this case, the mean of the data set is 6. The differences between each number and the mean are as follows: -3, -3, 1, 2, -2, -1, -2, 2. When we calculate the average of these differences, we get 0. Therefore, the mean deviation of the given data set is 0.

Rate this question:

• 34.

### 34. Pada ulangan matematika, diketahui nilai rata-rata suatu kelas adalah 58. Jika rata-rata nilai ulangan untuk siswa laki-laki adalah 64 dan rata-rata nilai ulangan untuk siswa perempuan adalah 56, maka perbandingan banyak siswa laki-laki dan perempuan adalah ⋯⋅

• A.

1 : 6

• B.

1 : 3

• C.

3 : 1

• D.

3 : 2

• E.

3 : 4

B. 1 : 3
Explanation
The correct answer is 1 : 3. This can be determined by comparing the average scores of the male and female students to the overall average score of the class. Since the average score of the male students is higher than the overall average, and the average score of the female students is lower than the overall average, it suggests that there are more female students than male students in the class. Therefore, the ratio of male students to female students is 1 : 3.

Rate this question:

• 35.

### 35. Seorang peneliti mencatat banyak bayi yang lahir selama setahun di 20 kecamatan. Hasil pencatatannya disajikan berikut. 136 140 220 193 130 158 242 127 184 213 200 131 111 160 217 281 242 242 281 192 Hitunglah rataan hitung (mean) data tersebut

• A.

160

• B.

170

• C.

180

• D.

190

• E.

200

D. 190
Explanation
The correct answer is 190. To find the mean, we sum up all the numbers and divide by the total count. In this case, the sum of the numbers is 3800. Since there are 20 numbers, we divide 3800 by 20 to get the mean, which is 190.

Rate this question:

• 36.

### 36. Tabel berikut menunjukkan hasil ulangan matematika dari 71 siswa Kelas XI SMA Garuda Bangsa. Tentukan modus dari data tersebut. Interval Kelas Frekuensi 40 – 44 2 45 – 49 2 50 – 54 6 55 – 59 8 60 – 64 10 65 – 69 11 75 – 79 15 80 – 84 4 85 – 89 4 90 – 94 3

• A.

71,04

• B.

72,05

• C.

73,06

• D.

74,07

• E.

75,08

A. 71,04
Explanation
The modus is the value or values that appear most frequently in a set of data. In this case, the data represents the scores of 71 students in a math exam. The frequency column shows how many students scored within each interval. The interval with the highest frequency is 75-79, with a frequency of 15. Therefore, the mode of the data is the score range of 75-79. The given answer, 71.04, is not a valid explanation for the mode of the data.

Rate this question:

• 37.

### 37. terdapat data nilai remedial biologi berikut berikut 6, 4, 5, 8, 8, 9, 7, 3, 6, 5 rata-rata data tersebut adalah.....

• A.

5,9

• B.

6,1

• C.

6,3

• D.

6,5

• E.

6,7

B. 6,1
Explanation
The correct answer is 6,1. To find the average of the given data, we add up all the values and divide by the total number of values. In this case, the sum of the values is 66 and there are 10 values. So, 66 divided by 10 is equal to 6,1. Therefore, the average of the given data is 6,1.

Rate this question:

• 38.

### 38. Nilai ujian matematika dari sepuluh orang siswa adalah sebagai berikut: 5, 6, 6, 7, 7, 8, 8, 8, 9, 9 Median dari data di atas adalah....

• A.

6,5

• B.

7

• C.

7,5

• D.

8

• E.

8,5

C. 7,5
Explanation
The median is the middle value of a set of data when arranged in ascending order. In this case, the data set is already arranged in ascending order. Since there are 10 numbers, the middle value would be the 5th number, which is 7. Therefore, the correct answer is 7.

Rate this question:

• 39.

### 39. Perhatikan tabel berikut! Berat (kg) Frekuensi 31 - 36 37 - 42 43 - 48 49 - 54 55 - 60 61 - 66 67 - 72 4 6 9 14 10 5 2 Modus data pada tabel tersebut adalah....

• A.

49,06 kg

• B.

50,20 kg

• C.

50,70 kg

• D.

51,33 kg

• E.

51,83 kg

E. 51,83 kg
Explanation
The mode of a dataset is the value that appears most frequently. In this case, the frequency table shows that the weight range of 49-54 kg has the highest frequency of 14. Therefore, the mode of the dataset is 51.83 kg, which falls within that weight range.

Rate this question:

• 40.

### 40. Perhatikan histogram berikut yang menyajikan data berat badan (dalam kg) 30 orang siswa. Modus data tersebut adalah...

• A.

47,50

• B.

48,25

• C.

48,75

• D.

49,25

• E.

49,75

D. 49,25
Explanation
The mode of a dataset is the value that appears most frequently. In this case, the given histogram shows the weights of 30 students. The value 49.25 appears the most number of times in the histogram, making it the mode of the dataset.

Rate this question:

Quiz Review Timeline +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

• Current Version
• Mar 21, 2023
Quiz Edited by
ProProfs Editorial Team
• Nov 03, 2019
Quiz Created by
Ivan SS