JEE-2022 Maths- Weekly Test - 30.8.2020 - Topic: St.Lines

15 Questions | Total Attempts: 16

SettingsSettingsSettings
Please wait...
JEE-2022 Maths- Weekly Test - 30.8.2020 - Topic: St.Lines


Questions and Answers
  • 1. 
    Through the point (3,4) are drawn two straight lines each inclined at 45∘ to the straight line x−y=2,Find their equations and also find the area of triangle bounded by the three lines.
    • A. 

      9

    • B. 

      9/2

    • C. 

      2

    • D. 

      2/9

  • 2. 
    The two adjacent sides of parallelogram are y = 0 and y=3–√(x−1). If equation of one diagonal is √3y=(x+1), then equation of other diagonal is
    • A. 

      √3y=(x-1)

    • B. 

      Y=√3(x+1)

    • C. 

      Y=-√3(x-1)

    • D. 

      √3y=-(x+1)

  • 3. 
    If h denotes the A.M. and k denote G.M. of t e intercept made on axes by the lines passing through (1,1) then (h,k) lies on
    • A. 

      Y^2=2x

    • B. 

      Y^2=4x

    • C. 

      Y=2x

    • D. 

      X+y=2xy

  • 4. 
    A ray of light passing through the point A(2, 3) reflected at a point B on line x+y=0 and then passes through (5, 3). Then the coordinates of B are
    • A. 

      (1/3,-1/3)

    • B. 

      (2/5,-2/5)

    • C. 

      (1/13,-1/13)

    • D. 

      None

  • 5. 
    The line y=2x+4 is shifted 2 units along +y axis, keeping parallel to itself and then 1 unit along +x axis direction in the same manner, then equation of the line in its new position is,
    • A. 

      Y=2x+6

    • B. 

      Y=2x+5

    • C. 

      Y=2x+4

    • D. 

      None

  • 6. 
    If the distance of a given point (α,β) from each of two straight lines y=mx through the origin is d, then (αγ−βx)^2 is equal to
    • A. 

      X^2+y^2

    • B. 

      D^2(x^2+y^2)

    • C. 

      D^2

    • D. 

      None

  • 7. 
    If P,Q are two points on the line 3x+4y+15=0 such that OP=OQ=9 then the area of triangle OPQ is
    • A. 

      18

    • B. 

      18√2

    • C. 

      27

    • D. 

      None

  • 8. 
    The point P(α,α+1) will lie inside the triangle whose vertices are A(0,3),B(−2,0) and C(6,1) if
    • A. 

      α =-1

    • B. 

      α =-2

    • C. 

      α =2

    • D. 

      -6/7 < α < 3/2

  • 9. 
    The values of k for which lines kx+2y+2=0,2x+ky+3=0,3x+3y+k=0 are concurrent are
    • A. 

      2,3,5

    • B. 

      2,3,-5

    • C. 

      3,-5

    • D. 

      -5

  • 10. 
    Pair of lines through (1,1) and making equal angle with 3x−4y=1 and 12x+9y=1 intersect x-axis at P1 and P2, then P1,P2 may be
    • A. 

      (8/7,0) and (9/7,0)

    • B. 

      (6/7,0) and (8,0)

    • C. 

      (8/7,0) and (1/8)

    • D. 

      (8,0) and (1/8,0)

  • 11. 
    The number of integral values of m for which the x-coordinate of the point of intersection of the lines 3x+4y=9 and y=mx+1 is also an integer is 
    • A. 

      2

    • B. 

      0

    • C. 

      4

    • D. 

      1

  • 12. 
    One diagonal of a square is 3x-4y+8=0 and one vertex is (-1,1) then the area of square is
    • A. 

      1/50

    • B. 

      1/25

    • C. 

      3/50

    • D. 

      2/25

  • 13. 
    A line moves in such a way that the sum of the intercepts made by it on the axes is always c. The locus of midpoint of its intercept between the axes is 
    • A. 

      X+y=2c

    • B. 

      X+y=c

    • C. 

      2(x+y)=c

    • D. 

      2x+y=c

  • 14. 
    The line x+3y-2=0 bisects the angle between a pair of straight lines of which one has equation of the other line is
    • A. 

      3x+3y=1=0

    • B. 

      X-3y+2=0

    • C. 

      5x+5y-3=0

    • D. 

      None

  • 15. 
    The area of the triangle formed by the lines y=ax, x+y-a=0 and the y-axis is equal to 
    • A. 

      1/2(1+a)

    • B. 

      A^2/(1+a)

    • C. 

      A/2(1+a)

    • D. 

      A^2/2(1+a)

Back to Top Back to top