Logika Matematika Dari Pernyataan Majemuk

Approved & Edited by ProProfs Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Fitribarnaqor19
F
Fitribarnaqor19
Community Contributor
Quizzes Created: 1 | Total Attempts: 380
Questions: 10 | Attempts: 380

SettingsSettingsSettings
Logika Matematika Dari Pernyataan Majemuk - Quiz

Questions and Answers
  • 1. 

     Kontraposisi dari pernyataan majemuk p → ( p V ~q ) adalah ….

    • A.

      A. ( p V ~q ) → ~p

    • B.

      B. (~p Λ q ) → ~p

    • C.

      C. ( p V ~q ) → p

    • D.

      D. (~p V q ) → ~p

    • E.

      E. ( p Λ ~q ) → ~p

    Correct Answer
    B. B. (~p Λ q ) → ~p
    Explanation
    The correct answer is b. The contrapositive of the compound statement p → ( p V ~q ) is (~p Λ q ) → ~p. In the contrapositive, the antecedent (~p Λ q) of the conditional statement is negated and becomes ~p. The consequent ~p of the original statement becomes the antecedent of the contrapositive.

    Rate this question:

  • 2. 

    • Invers dari pernyataan p → ( p Λ q ) adalah .....

    • A.

      A. (~p Λ ~q ) → ~p

    • B.

      B. (~p V ~q ) → ~p

    • C.

      C. ~p → (~p Λ ~q )

    • D.

      D. ~p → (~p Λ q )

    • E.

      E. ~p → (~p V ~q )

    Correct Answer
    E. E. ~p → (~p V ~q )
    Explanation
    The inverse of a conditional statement "p → q" is "~p → ~q". In this case, the given statement is "p → (p ∧ q)". To find the inverse, we negate both the antecedent and the consequent. So, the inverse of the given statement is "~(p → (p ∧ q))", which can be simplified to "~p → ~(p ∧ q)". The correct answer e. "~p → (~p V ~q)" matches this form and is therefore the correct inverse of the given statement.

    Rate this question:

  • 3. 

    • Diketahui pernyataan :
      • Jika hari panas, maka Ani memakai topi
      • Ani tidak memakai topi atau ia memakai payung
      • Ani tidak memakai payung
    Kesimpulan yang sah adalah ….

    • A.

      A. Hari panas

    • B.

      B. Hari tidak panas

    • C.

      C. Ani memakai topi

    • D.

      D. Hari panas dan Ani memakai topi

    • E.

      E. Hari tidak panas dan Ani memakai topi

    Correct Answer
    B. B. Hari tidak panas
    Explanation
    The conclusion "Hari tidak panas" is valid because based on the given statements, if it is a hot day, then Ani wears a hat. However, it is also stated that Ani either wears a hat or carries an umbrella. Since it is stated that Ani does not carry an umbrella, the only possibility left is that Ani wears a hat. Therefore, we can conclude that it is not a hot day.

    Rate this question:

  • 4. 

    • Penarikan kesimpulan yang sah dari argumentasi berikut :
      Jika Siti sakit maka dia pergi ke dokter Jika Siti pergi ke dokter maka dia diberi obat. adalah ….

    • A.

      A. Siti tidak sakit atau diberi obat

    • B.

      B. Siti sakit atau diberi obat

    • C.

      C. Siti tidak sakit atau tidak diberi obat

    • D.

      D. Siti sakit dan diberi obat

    • E.

      E. Siti tidak sakit dan tidak diberi obat

    Correct Answer
    A. A. Siti tidak sakit atau diberi obat
    Explanation
    The valid conclusion that can be drawn from the given argument is that either Siti is not sick or she is given medicine. This conclusion can be derived by combining the two conditional statements provided. If Siti is sick, then she goes to the doctor. And if Siti goes to the doctor, then she is given medicine. Therefore, it can be inferred that if Siti is not sick, she may still go to the doctor and be given medicine.

    Rate this question:

  • 5. 

    • Diketahui premis berikut :
      • Jika Budi rajin belajar maka ia menjadi pandai.
      • Jika Budi menjadi pandai maka ia lulus ujian.
      • Budi tidak lulus ujian.
    Kesimpulan yang sah adalah ….

    • A.

      A. Budi menjadi pandai

    • B.

      B. Budi rajin belajar

    • C.

      C. Budi lulus ujian

    • D.

      D. Budi tidak pandai

    • E.

      E. Budi tidak rajin belajar

    Correct Answer
    E. E. Budi tidak rajin belajar
    Explanation
    The conclusion that can be drawn from the given premises is that Budi is not diligent in studying. This can be inferred because if Budi is diligent in studying, he will become smart, and if he becomes smart, he will pass the exam. However, since Budi did not pass the exam, it can be concluded that he is not diligent in studying.

    Rate this question:

  • 6. 

    • Penarikan kesimpulan yang sah dari argumen tasi berikut :
    ~p → q   q → r ---------- \ …

    • A.

      A. p Λ r

    • B.

      B. ~p V r

    • C.

      C. p Λ ~r

    • D.

      D. ~p Λ r

    • E.

      E. p V r

    Correct Answer
    E. E. p V r
    Explanation
    The argument states that if ~p implies q, and q implies r, then we can conclude p V r. This means that either p is true or r is true, or both. This conclusion is valid because if ~p is true, then q is true, which means r is also true. And if ~p is false, then p is true, which also satisfies the conclusion. Therefore, the correct answer is e. p V r.

    Rate this question:

  • 7. 

    • Diketahui argumentasi :
      • p → q             
         ~p                        ----------                  \ ~q   
    • p → q 
       ~q V r                                       ----------                                         \ p → r                 
    • p → q
    p → r   ----------                       \ q → r Argumentasi yang sah adalah ….

    • A.

      A. I saja

    • B.

      B. II saja

    • C.

      C. III saja

    • D.

      D. I dan II saja

    • E.

      E. II dan III saja

    Correct Answer
    D. D. I dan II saja
    Explanation
    The argumentation is valid because it follows the rule of logical implication. In the first argument (I), if p implies q and ~p is true, then ~q must also be true. In the second argument (II), if p implies q and ~q is true, then p implies r. Therefore, both I and II are valid arguments. Argument III is not a valid argument because it does not follow the rule of logical implication. Therefore, the correct answer is d. I and II only.

    Rate this question:

  • 8. 

    • Ditentukan premis – premis :
      • Jika Badu rajin bekerja maka ia disayang ibu.
      • Jika Badu disayang ibu maka ia disayang nenek
      • Badu tidak disayang nenek
    Kesimpulan yang sah dari ketiga premis diatas adalah ….

    • A.

      A. Badu rajin bekerja tetapi tidak disayang ibu

    • B.

      B. Badu rajin bekerja

    • C.

      C. Badu disayang ibu

    • D.

      D. Badu disayang nenek

    • E.

      E. Badu tidak rajin bekerja

    Correct Answer
    E. E. Badu tidak rajin bekerja
    Explanation
    The valid conclusion from the given premises is that Badu is not diligent in working. This can be inferred from the fact that if Badu is diligent in working, then he is loved by his mother. And if Badu is loved by his mother, then he is loved by his grandmother. However, it is stated that Badu is not loved by his grandmother. Therefore, we can conclude that Badu is not diligent in working.

    Rate this question:

  • 9. 

    • Penarikan kesimpulan dengan menggunakan modus tolens didasarkan atas suatu pernyataan majemuk yang selalu berbentuk tautologi untuk setiap kasus. Pernyataan yang dimaksud adalah ….

    • A.

      A. ( p → q ) Λ p → q

    • B.

      B. ( p → q ) Λ ~q → ~p

    • C.

      C. ( p → q ) Λ p → ( p Λ q )

    • D.

      D. ( p → q ) Λ ( q → r ) → ( p → r )

    • E.

      E. ( p → q ) Λ ( p → r ) → ~ ( q → r )

    Correct Answer
    B. B. ( p → q ) Λ ~q → ~p
    Explanation
    The correct answer is b. ( p → q ) Λ ~q → ~p. This answer is correct because it accurately represents the form of modus tolens, which states that if a conditional statement (p → q) is true and the consequent (q) is false, then the antecedent (p) must also be false. The given answer follows this form by stating that if (p → q) is true and ~q (not q) is true, then ~p (not p) must also be true. This aligns with the logic of modus tolens and is a valid conclusion.

    Rate this question:

  • 10. 

    • Kesimpulan dari premis berikut merupakan ….
    p → ~q q V r ---------- \ p → r

    • A.

      A. konvers

    • B.

      B. kontra posisi

    • C.

      C. modus ponens

    • D.

      D. modus tollens

    • E.

      E. silogisme

    Correct Answer
    E. E. silogisme
    Explanation
    The conclusion of the given premises is a result of the application of the silogisme. The first premise states that if p is true, then q is false. The second premise states that either q or r is true. From these two premises, we can infer that if p is true, then r is true. This is a valid application of the silogisme, making option e the correct answer.

    Rate this question:

Quiz Review Timeline +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Jul 22, 2024
    Quiz Edited by
    ProProfs Editorial Team
  • Feb 13, 2012
    Quiz Created by
    Fitribarnaqor19
Back to Top Back to top
Advertisement