Discrete
Continous
Digital
True
False
If time t approaches to infinity then the function f(t) should exists.
If time t approaches to zero then the function f(t) should vanish.
If time t approaches to zero then the function f(t) should exists.
If time t approaches to infinity then the function f(t) should vanish.
If the function sF(s)has the infinite pole
If the function sF(s)has pole on origin
If the function sF(s)has no zeros
If the function sF(s)has pole at unity
1 + x + x^2 + x^3 + x^4 + . . .
1 − x + 2x^2 − 3x^3 + 4x^4 − . . .
1 − x + x^2 − x^3 + x^4 − . . .
1 + nx +[n(n − 1)/2!] x^2 +[n(n − 1)(n − 2)/3!] x^3 + . . .
1 + nx +2[n(n − 1)/2!] x^2 +3[n(n − 1)(n − 2)/3!] x^3 + . . .
1 - nx +[n(n − 1)/2!] x^2 +[n(n − 1)(n − 2)/3!] x^3 + . . .
1 - nx +[n(n − 1)/2!] x^2 -[n(n − 1)(n − 2)/3!] x^3 - . . .
Frequency lesser than infinity
Frequency less than cut-off frequency
Frequency higher than infinity
Frequency higher than cut-off frequency
Ratio of laplace transform of input to output response
Ratio of laplace transform of input to output response with zero initial condition
Ratio of laplace transform of output to input response with zero initial condition
Ratio of laplace transform of output to input response
Higher
Lower
Wait!
Here's an interesting quiz for you.