# Kuis Phytagoras Kelas 8

Approved & Edited by ProProfs Editorial Team
At ProProfs Quizzes, our dedicated in-house team of experts takes pride in their work. With a sharp eye for detail, they meticulously review each quiz. This ensures that every quiz, taken by over 100 million users, meets our standards of accuracy, clarity, and engagement.
| Written by Rindah
R
Rindah
Community Contributor
Quizzes Created: 34 | Total Attempts: 60,402
Questions: 15 | Attempts: 1,624  Settings  .

• 1.

### Diketahui segitiga KLM dengan panjang sisi-sisinya k, l, dan m. Pernyataan berikut yang benar dari segitiga KLM adalah ..

• A.

A. Jika m2 = l 2 + k2 , besar ∠K = 90 derajat

• B.

B. Jika m2 = l 2 − k2 , besar ∠M = 90 derajat

• C.

C. Jika m2 = k2 − l 2 , besar ∠L = 90 derajat

• D.

D. Jika k2 = l 2 + m2 , besar ∠K = 90 derajat

D. D. Jika k2 = l 2 + m2 , besar ∠K = 90 derajat
Explanation
The correct answer is D. Jika k2 = l2 + m2, besar ∠K = 90 derajat. This statement is the correct one because it represents the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (in this case, k) is equal to the sum of the squares of the lengths of the other two sides (l and m). Therefore, if k2 = l2 + m2, it implies that angle K is a right angle (90 degrees).

Rate this question:

• 2.

### Perhatikan gambar berikut. Panjang sisi PQ = ... cm.

• A.

A. 10

• B.

B. 12

• C.

C. 13

• D.

D. 14

A. A. 10
Explanation
Based on the given image, it can be observed that the line segment PQ is a straight line connecting two points. The length of this line segment can be determined by measuring the distance between these two points. By measuring it, it is found that the length of PQ is 10 cm. Therefore, the correct answer is A. 10.

Rate this question:

• 3.

### Diketahui kelompok tiga bilangan berikut. (i) 3, 4, 5 (ii) 5, 13, 14 (iii) 7, 24, 25 (iv) 20, 21, 29 Kelompok bilangan di atas yang merupakan tripel Pythagoras adalah ....

• A.

A. (i), (ii), dan (iii)

• B.

B. (i) dan (iii)

• C.

C. (ii) dan (iv)

• D.

D. (i), (ii), (iii), dan (iv)

B. B. (i) dan (iii)
Explanation
The given groups of numbers are (i) 3, 4, 5 and (iii) 7, 24, 25. A set of numbers is considered a Pythagorean triple if it satisfies the Pythagorean theorem, which states that the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides. In group (i), 3^2 + 4^2 = 5^2, so it satisfies the Pythagorean theorem. In group (iii), 7^2 + 24^2 = 25^2, so it also satisfies the Pythagorean theorem. Therefore, the Pythagorean triples in the given groups are (i) and (iii).

Rate this question:

• 4.

### (i) 3 cm, 5 cm, 6 cm (ii) 5 cm, 12 cm, 13 cm (iii) 16 cm, 24 cm, 32 cm (iv) 20 cm, 30 cm, 34 cm Ukuran sisi yang membentuk segitiga lancip ditunjukkan oleh ....

• A.

A. (i) dan (ii)

• B.

B. (i) dan (iii)

• C.

C. (ii) dan (iii)

• D.

D. (iv)

D. D. (iv)
Explanation
The sides that form an acute triangle are the ones that satisfy the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. In this case, only the sides in option (iv) satisfy this condition, as 20 + 30 > 34, 20 + 34 > 30, and 30 + 34 > 20. Therefore, the correct answer is D. (iv).

Rate this question:

• 5.

### Diketahui suatu layang-layang berkoordinat di titik K(−5, 0), L(0, 12), M(16, 0), dan N(0, −12). Keliling layang-layang KLMN adalah..

• A.

A. 33 satuan

• B.

B. 52 satuan

• C.

C. 66 satuan

• D.

D. 80 satuan

C. C. 66 satuan
Explanation
The given question asks for the perimeter of a kite with coordinates K(-5, 0), L(0, 12), M(16, 0), and N(0, -12). To find the perimeter, we need to calculate the distance between each pair of consecutive points and then add them together.

The distance between K and L can be found using the distance formula: √((-5-0)^2 + (0-12)^2) = √(25 + 144) = √169 = 13.

The distance between L and M can be found using the distance formula: √((0-16)^2 + (12-0)^2) = √(256 + 144) = √400 = 20.

The distance between M and N can be found using the distance formula: √((16-0)^2 + (0-(-12))^2) = √(256 + 144) = √400 = 20.

The distance between N and K can be found using the distance formula: √((-5-0)^2 + (-12-0)^2) = √(25 + 144) = √169 = 13.

Adding all these distances together: 13 + 20 + 20 + 13 = 66.

Therefore, the perimeter of the kite KLMN is 66 units.

Rate this question:

• 6.

### Jika segitiga siku-siku PQR dengan panjang sisi siku-sikunya 4 dm dan 6 dm, maka panjang hipotenusa dari ∆PQR adalah ...

• A.

A. 52 dm

• B.

B. 10 dm

• C.

C. 2 akar13 dm

• D.

D. akar 26 dm

C. C. 2 akar13 dm
Explanation
The length of the hypotenuse in a right triangle can be found using the Pythagorean theorem, which states that the square of the hypotenuse is equal to the sum of the squares of the other two sides. In this case, the given lengths of the legs of the triangle are 4 dm and 6 dm. So, using the Pythagorean theorem, we can calculate the length of the hypotenuse as follows:

hypotenuse^2 = 4^2 + 6^2
hypotenuse^2 = 16 + 36
hypotenuse^2 = 52

Taking the square root of both sides, we get:

hypotenuse = √52

Simplifying the square root, we have:

hypotenuse = 2√13 dm

Therefore, the correct answer is C. 2√13 dm.

Rate this question:

• 7.

### Perhatikan peta yang dibuat Euclid di bawah. Bangunan manakah yang berjarak 40 satuan?

• A.

• B.

B. Pusat Kota dan Museum

• C.

C. Rumah Sakit dan Museum

• D.

D. Penampungan Hewan dan Kantor polisi

D. D. Penampungan Hewan dan Kantor polisi
Explanation
Based on the given map, the correct answer is D. Penampungan Hewan dan Kantor polisi. This is because the distance between Penampungan Hewan and Kantor polisi is 40 satuan, as indicated on the map.

Rate this question:

• 8.

### Di antara ukuran panjang sisi segitiga berikut, manakah yang membentuk segitiga siku-siku?

• A.

A. 10 cm, 24 cm, 26 cm

• B.

B. 5 cm, 10 cm, 50 cm

• C.

C. 4 cm, 6 cm, 10 cm

• D.

D. 8 cm, 9 cm, 15 cm

A. A. 10 cm, 24 cm, 26 cm
Explanation
The lengths of the sides of a right triangle must satisfy the Pythagorean theorem, which states that the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In this case, 10^2 + 24^2 = 100 + 576 = 676, which is equal to 26^2. Therefore, the lengths 10 cm, 24 cm, and 26 cm form a right triangle.

Rate this question:

• 9.

### Suatu segitiga siku-siku memiliki panjang hipotenusa 17 cm dan panjang salah satu sisi tegaknya adalah 15 cm. Panjang sisi tegak lainnya adalah ....

• A.

A. 6 cm

• B.

B. 8 cm

• C.

C. 12 cm

• D.

D. 16 cm

B. B. 8 cm
Explanation
In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. Using the Pythagorean theorem, we can find the length of the other side. In this case, the length of the hypotenuse is 17 cm and the length of one side is 15 cm. So, we can calculate the length of the other side as follows: 17^2 = 15^2 + x^2. Solving this equation, we find that x^2 = 289 - 225 = 64. Taking the square root of both sides, we get x = 8 cm. Therefore, the length of the other side is 8 cm, which is option B.

Rate this question:

• 10.

### Panjang hipotenusa dan tinggi suatu segitiga siku-siku berturut-turut 25 cm dan 24 cm. Keliling segitiga tersebut ..

• A.

A. 49 cm

• B.

B. 56 cm

• C.

C. 66 cm

• D.

D. 74 cm

B. B. 56 cm
Explanation
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. In this case, the length of the hypotenuse (c) is 25 cm and the length of the height (b) is 24 cm. Using the Pythagorean theorem, we can find the length of the base (a) using the formula a^2 + b^2 = c^2. Plugging in the values, we get a^2 + 24^2 = 25^2. Simplifying, we get a^2 + 576 = 625. Subtracting 576 from both sides, we get a^2 = 49. Taking the square root of both sides, we get a = 7. Therefore, the perimeter of the triangle is a + b + c = 7 + 24 + 25 = 56 cm.

Rate this question:

• 11.

### Panjang sisi siku-siku suatu segitiga siku-siku berturut-turut adalah 4a cm dan 3a cm. Jika panjang sisi hipotenusanya adalah 70 cm, keliling segitiga tersebut adalah ...

• A.

A. 136 cm

• B.

B. 144 cm

• C.

C. 168 cm

• D.

D. 192 cm

C. C. 168 cm
Explanation
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. In this case, the lengths of the two sides are 4a cm and 3a cm. Using the Pythagorean theorem, we can set up the equation (4a)^2 + (3a)^2 = (70)^2. Simplifying this equation gives us 16a^2 + 9a^2 = 4900. Combining like terms gives us 25a^2 = 4900. Solving for a gives us a = 14. Substituting this value back into the equation for the lengths of the sides gives us 4a = 56 cm and 3a = 42 cm. The perimeter of the triangle is then 56 + 42 + 70 = 168 cm.

Rate this question:

• 12.

### Sebuah kapal berlayar ke arah utara sejauh 11 km kemudian kapal tersebut berbelok ke arah barat dan berlayar sejauh 9 km. Jarak kapal dari titik awal keberangkatan ke titik akhir adalah ....

• A.

A. akar 102 km

• B.

B. 102 km

• C.

C. akar 202 km

• D.

C. 202 km

C. C. akar 202 km
Explanation
The correct answer is C. akar 202 km. The ship initially sails 11 km north and then turns west and sails 9 km. To find the distance from the starting point to the ending point, we can use the Pythagorean theorem. The distance is equal to the square root of the sum of the squares of the two distances traveled. In this case, it is equal to the square root of (11^2 + 9^2) = square root of (121 + 81) = square root of 202. Therefore, the distance is akar 202 km.

Rate this question:

• 13.

• A.

A. 246 inci2

• B.

B. 266,5 inci2

• C.

C. 276 inci2

• D.

D. 299 inci2

C. C. 276 inci2
• 14.

### Kubus KLMN.PQRS di samping memiliki panjang rusuk 13 cm. Panjang KM adalah ...

• A.

A. 13,5 cm

• B.

B. 13 akar 2 cm

• C.

C. 13 akar3 cm

• D.

D. 13 akar6 cm

B. B. 13 akar 2 cm
Explanation
The length of KM in the cube KLMN.PQRS can be found by using the Pythagorean theorem. Since KLMN.PQRS is a cube, all of its sides have equal length. Therefore, the length of KM is equal to the length of any other side. The length of the side is given as 13 cm. Using the Pythagorean theorem, we can find the length of KM by taking the square root of the sum of the squares of the other two sides. In this case, the other two sides are both 13 cm. Therefore, the length of KM is equal to 13 times the square root of 2, or 13√2 cm.

Rate this question:

• 15.

• A.

A. 5

• B.

B. 7

• C.

C. 8

• D.

D. 10 Back to top