Test Of Bs V Evening Course: Math305, Numerical Analysis 1, Chapter 1

15 Questions | Total Attempts: 373

SettingsSettingsSettings
Please wait...
Test Of Bs V Evening Course: Math305, Numerical Analysis 1, Chapter 1

The contents of the test are from Chapter 1: Computer Arithmetic. There are 15 MCQs in the test. All MCQs are compulsory. The duration is 25 minutes.


Questions and Answers
  • 1. 
    Truncation error is caused by approximating
    • A. 

      Irrational numbers

    • B. 

      Fractions

    • C. 

      Rational Numbers

    • D. 

      Exact mathematical procedures or infinite process in finite.

  • 2. 
    True error is defined as
    • A. 

      Present Approximation – Previous Approximation

    • B. 

      True Value – Approximate Value

    • C. 

      Abs (True Value – Approximate Value)

    • D. 

      Abs (Present Approximation – Previous Approximation)

  • 3. 
    The number 0.01850*10^3 has ________ significant digits
    • A. 

      3

    • B. 

      5

    • C. 

      4

    • D. 

      6

  • 4. 
    A computer that represents only 4 significant digits with chopping would calculate 66.666*33.333 as
    • A. 

      2220

    • B. 

      2221

    • C. 

      2221.17778

    • D. 

      2222

  • 5. 
    In single precision, the number of bits available to store an integer are
    • A. 

      31

    • B. 

      23

    • C. 

      24

    • D. 

      63

  • 6. 
    The result of rounding the number 1.5856 to two significant digits is:
    • A. 

      1.59

    • B. 

      1.5

    • C. 

      1.6

    • D. 

      1.58

  • 7. 
    In single precision, the smallest positive number that can be stored is
    • A. 

      2^(-127)

    • B. 

      1.2*10^(-37)

    • C. 

      0

    • D. 

      2^(-126)

  • 8. 
    In double precision, the largest exponent corresponds to
    • A. 

      255

    • B. 

      2046

    • C. 

      C-127

    • D. 

      C-1023

  • 9. 
    In single precision, the largest number that can be stored is
    • A. 

      2^127

    • B. 

      (2-2^(-24))*2^127

    • C. 

      (2-2^(-52))*2^126

    • D. 

      3.4*10^(38)

  • 10. 
    In double precision, what is the smallest number that can be stored?
    • A. 

      (2-2^(-52))*2^127

    • B. 

      2^(-1022)

    • C. 

      -1.8*10^(308)

    • D. 

      (2-2^(-52))*2^1023

  • 11. 
    Which of these numbers will overflow to infinity in 32 bit word length computer?
    • A. 

      10^(40)

    • B. 

      1.2*10^(-38)

    • C. 

      3.4*10^(38)

    • D. 

      2^(120)

  • 12. 
    Which of these numbers will underflow to zero in 64 bit word length computer?
    • A. 

      2.2*10^(-308)

    • B. 

      10^(-333)

    • C. 

      1.8*10^(308)

    • D. 

      2^(-1022)

  • 13. 
    Which of these numbers will overflow to negative infinity in a 32 bit word length computer?
    • A. 

      7*10^(41)

    • B. 

      -4*10^(39)

    • C. 

      10^(-40)

    • D. 

      -3.4*10^(38)

  • 14. 
    What is the upper bound of relative round off error for a 64 bit word length computer?
    • A. 

      2^(-23)

    • B. 

      2^(-24)

    • C. 

      2^(-52)

    • D. 

      2^(-51)

  • 15. 
    How many significant digits will be lost in calculating y=x-sin(x) for x=1/15 with a calculator having 9 decimal digits of memory?
    • A. 

      9

    • B. 

      0

    • C. 

      4

    • D. 

      3

Back to Top Back to top