Real And Complex Analysis

20 Questions | Attempts: 58
Share

SettingsSettingsSettings
Real And Complex Analysis - Quiz


Questions and Answers
  • 1. 
    Which is compact in Rn?
    • A. 

      {(x1,x2,x3,……….xn )   ∶ |xi | ≤ 1,   1 ≤ i ≤n}.

    • B. 

      {(x1,x2,x3,……….xn )   ∶ x1+x2+x3+......+xn=0}.

    • C. 

      {(x1,x2,x3,……….xn )   ∶  xi > 0,   1 ≤ i ≤ n}.

    • D. 

      {(x1,x2,x3,……….xn )   ∶ 1≤ |xi | < 2,   1 ≤ i ≤ n}.

  • 2. 
    If G is an open set and   f : G → C is differentiable function then 
    • A. 

      F is analytic on G

    • B. 

      F is non-analytic on G

    • C. 

      F is constant on C

    • D. 

      None of these

  • 3. 
    Listed below are four subsets of C2. Which is bounded in C2.      ( R(z) denotes  real part of z )
    • A. 

       { (z,w) ∈ C2  :   z 2+w 2 = 1}

    • B. 

       { (z,w) ∈ C 2   :   | R(z)| 2+ |R(w)| 2=1}

    • C. 

       { (z,w) ∈ C 2  :  |z| 2+  |w| 2  = 1}

    • D. 

       { (z,w) ∈ C 2  :  |z| 2 - |w| 2  =1}

  • 4. 
     The image of the region {z ∈ C:  Re (z )>0, Im (z) >0 } under the mapping z → e z^2 is 
    • A. 

      {w ∈ C:  Re (w )>0, Im (w) >0 }

    • B. 

      {w ∈ C:  Re (w )>0, Im (w) >0, |w| >1 }

    • C. 

      {w ∈ C:   |w|>1 }

    • D. 

      {w ∈ C:   Im (w) >0,  |w| >1 }

  • 5. 
    Consider the function f(z) = z(1-cosz),   z C (Choose all possible options)
    • A. 

      The function f has zero of order 2 at 0

    • B. 

      The function f has zero of order 1 at  2nπ, n = ±1, ±2, ….

    • C. 

      The function f has zero of order 4 at 0

    • D. 

      The function f has zero of order 2 at  2nπ,  n = ±1, ±2, ….

  • 6. 
    Which is closed in C ?
    • A. 

      { z ∈ C:   Re z= Im z}

    • B. 

      {z∈ C:   Re z ≠ 0}

    • C. 

      {z∈ C:   |z| ≠0}

    • D. 

      {z∈ C:  Im z ≠ 0}

  • 7. 
    F : D→ D be holomorphic with f(0)= 0,  f(1/2)=0 where D = {z : |z| < 1}. Then   (Choose all possible options)
    • A. 

      | f'(1/2) |  ≤ 4/3

    • B. 

      |f(1/2)| ≤ 1

    • C. 

      | f'(1/2) |  ≤ 4/3  and   |f'(0)|  ≤1

    • D. 

      F(z) = z,   z∈ D

  • 8. 
    Let f(z) = (z - 1) / (e2πi/z -1). Then   (Choose all possible options)
    • A. 

      F has isolated singularity at z = 0.

    • B. 

      F has removable singularity at z=1.

    • C. 

      F has infinitely many poles.

    • D. 

      Each pole of f is of order 1.

  • 9. 
    Suppose f : C C is a holomorphic function such that the real part of f''(z) is strictly positive for all z∈ C. What is the possible number of solutions of the equation f(z)= az + b as a and b vary over C?         
    • A. 

      1

    • B. 

      0

    • C. 

    • D. 

      2

  • 10. 
    Let f : C → C be a non-constant entire function and let  Im (f) = {w∈ C :  z ∈ C such that f(z) = w}. Then 
    • A. 

      Then interior of Im (f) is empty

    • B. 

      Im (f) intersects every line passing through the origin

    • C. 

      There exists a disc in complex plane, which is disjoint from Im (f)

    • D. 

      Im(f) contains all its limit points

  • 11. 
     For z ∈ C  of the form z = x+ iy, define  H+ = {z∈ C :  y > 0 } , H - = {z∈ C :  y < 0 },   L+ = {z∈ C :  x> 0 },  L- = {z∈ C :  x < 0 }. The function f(z)= (2z+1)/(5z+3)
    • A. 

      Maps H+ onto H and H- onto H

    • B. 

      Maps H+ onto H- and H- onto H +

    • C. 

      Maps H+ onto L and H- onto L-

    • D. 

      Maps H+ onto L and H- onto L+

  • 12. 
    Let A be a closed subset of  R,  A ≠ ∅ ,  A ≠  R. Then A is
    • A. 

      The closure of the interior of A

    • B. 

      A countable set

    • C. 

      A compact set

    • D. 

      Not open

  • 13. 
    Let I = { 1 } ∪ { 2 } for x ∈ R,  ϕ (x )= dist (x , I) = Inf { |x - y| : y I },  then ϕ is
    • A. 

      Discontinuous somewhere.

    • B. 

      Continuous on R  but not differentiable only at x=1.

    • C. 

      Continuous on R  but  not differentiable only at x=1, 2.

    • D. 

      Continuous on R  but not differentiable only at   x=1, 3 /2 ,2. 

  • 14. 
    Let X ⊂  R  be an infinite countable bounded subset of R  then which of the statements is true
    • A. 

      X cannot be compact. 

    • B. 

      X contains an interior point.

    • C. 

      X may be closed.

    • D. 

      Closure of X is countable.

  • 15. 
    Let A be a connected open subset of R2.The number of continuous surjective functions from the closure of A in R2  to Q is 
    • A. 

      1

    • B. 

      0

    • C. 

      2

    • D. 

      Not finite

  • 16. 
     Let f : X→X  such that f [ f x ) ] = x,  for all  x ∈ X   then  
    • A. 

      F is one-to-one and onto.

    • B. 

      F is one-to-one but not onto

    • C. 

      F is onto but not one-to-one

    • D. 

      F need not be either one-to-one or onto

  • 17. 
     Suppose f :  R → R  is a function that satisfies  | f(x) - f(y) | ≤  | x - y | β ,  β > 0    (Choose all possible options) 
    • A. 

      If β =1  then f is differentiable. 

    • B. 

      If β >0  then f is uniformly continuous .

    • C. 

      If β >1 then f is constant function.

    • D. 

      F must be a polynomial.

  • 18. 
    Which of the following subsets of Ris /are convex?    (Choose all possible options)
    • A. 

        {(x,y) :  x ≤ 5 ,  y ≤ 10 }.  

    • B. 

       {(x , y) :  x 2 + y 2 =1}.  

    • C. 

       {(x , y) :  y ≥  x 2 }. 

    • D. 

       {(x , y) :  y ≤  x 2 }.

  • 19. 
          Let  f(x) : R→ R  be defined by  fn(x) = x / (1+n x2) , n∈ N. Then (Choose all possible options)      
    • A. 

      The sequence {fn(x)} converges uniformly on R.

    • B. 

      The sequence {fn(x)}  converges uniformly  on [1, b]  for any b > 1.

    • C. 

      The sequence {fn'(x)}  converges uniformly on R.

    • D. 

      The sequence {fn'(x)}  converges uniformly on  [1,b] for any b > 1.

  • 20. 
      Let  G1 and  G2  be two subsets of R 2 and  f: R 2→ R 2 be a function, then  (Choose all possible options)  
    • A. 

        f -1( G1 ∪ G )  = f -1(G1) ∪  f -1( G2 ) . 

    • B. 

       f -1(G1 )c = ( f -1( G1 ) ) c . 

    • C. 

       f (G 1 ∩ G 2) = f (G 1 ) ∩  f ( G ). 

    • D. 

       If G1 is open and G2 is closed then  G1 + G 2 = { x+y  :  x∈ G 1 , y∈ G 2 }  is neither open nor closed. 

Back to Top Back to top
×

Wait!
Here's an interesting quiz for you.

We have other quizzes matching your interest.