Diskretna Matematika 1. Kolokvijum

Reviewed by Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Djika22
D
Djika22
Community Contributor
Quizzes Created: 1 | Total Attempts: 278
| Attempts: 278 | Questions: 148
Please wait...
Question 1 / 148
0 %
0/100
Score 0/100
1. Skupovi se obeležavaju:

Explanation

Sets are typically marked or labeled using capital letters of the alphabet. This convention helps to distinguish sets from individual elements or variables, which are often represented using lowercase letters. Using capital letters also makes it easier to read and understand mathematical expressions involving sets.

Submit
Please wait...
About This Quiz
Diskretna Matematika 1. Kolokvijum - Quiz

Tell us your name to personalize your report, certificate & get on the leaderboard!
2. Recenica 2+2=3 je:

Explanation

The correct answer is "iskaz, iskaz koji nije tacan." This means that the sentence "2+2=3" is a statement, and it is a statement that is not true. In other words, it is a false statement.

Submit
3. Logika je nauka o?

Explanation

Logika je nauka o metodama pravilnog mišljenja i zaključivanja. Ova disciplina proučava različite načine na koje možemo donositi ispravne zaključke na osnovu rasuđivanja i argumentacije. Metode pravilnog mišljenja nam pomažu da razumemo kako da koristimo logičke principe i pravila kako bismo došli do tačnih zaključaka. Zaključivanje je ključni deo logike, jer nam omogućava da izvodimo nove informacije ili tvrdnje iz već postojećih. Stoga, odgovor "metodama pravilnog mišljenja, zaključivanja" je tačan.

Submit
4. Čuvena misao Rene Dekarta glasi:

Explanation

The correct answer is "mislim dakle postojim, cogito ergo sum." This is because it is the correct translation of the famous quote by René Descartes, which means "I think, therefore I am." It is a fundamental philosophical statement that asserts the existence of oneself based on the act of thinking.

Submit
5. Tvorac logike je?

Explanation

Aristotel je tvorac logike jer je bio grčki filozof koji je prvi sistematski razvio logičko razmišljanje i postavio osnove formalne logike. Njegovo delo "Organon" smatra se temeljem zapadne logike i uticalo je na razvoj filozofije i nauke. Aristotel je razvio koncepte kao što su zaključivanje, premisa, syllogism i kategorije, koji su postali osnova za razumijevanje i analizu logičkih argumenata. Stoga, Aristotel se smatra tvorcem logike.

Submit
6. Iskaz se jos naziva:

Explanation

The correct answer is "sud" because "sud" is the Serbian word for "statement" or "proposition." It refers to a declarative sentence that can be either true or false. The other options, "tautologija" (tautology), "kontrapozicija" (contraposition), and "recenica" (sentence), are not accurate translations of "statement" in this context.

Submit
7. Skup čine elementi koji:

Explanation

The correct answer is "imaju bar jednu zajedničku osobinu" which means "have at least one common characteristic" in English. This implies that the elements in the set may have more than one common characteristic, but they must have at least one in common.

Submit
8. Po definiciji 0! je:

Explanation

The correct answer is 1. By definition, 0! (zero factorial) is equal to 1. This is a mathematical convention that is used to simplify calculations and maintain consistency in factorial calculations.

Submit
9. Prazan skup je skup koji:

Explanation

The correct answer is "nema elemenata." This means that an empty set is a set that does not have any elements.

Submit
10. Recenica 1+2=3 je:

Explanation

The given correct answer for this question is "iskaz, iskaz koji je tacan". This means that the statement "1+2=3" is a proposition and it is a true proposition. In logic, a proposition is a statement that can be either true or false, and in this case, the statement "1+2=3" is true because the sum of 1 and 2 is indeed equal to 3.

Submit
11. Sta je relacija:

Explanation

The correct answer is "veza, odnos". In the context of the question, "relacija" can be translated as "relation" in English. A relation is a connection or association between two or more things. It can be understood as a link or bond that exists between entities. Therefore, "veza" (meaning "connection" or "link") and "odnos" (meaning "relationship") accurately describe the concept of a relation. The other options, "operacija" (meaning "operation") and "funkcija" (meaning "function"), do not accurately capture the meaning of "relacija" in this context.

Submit
12. Iskaz je recenica koja je:

Explanation

The statement is asking about the nature of an "iskaz" (statement). The correct answer is that a statement can only be true or false, meaning it can only be either correct or incorrect. This suggests that there are no other possibilities for the truth value of a statement, and it cannot be partially true or partially false. Therefore, the statement is either true or false, and this is the only correct answer.

Submit
13. Recenica x+2=3 je:

Explanation

The given sentence "x+2=3" is not a proposition or statement because it contains a variable "x" which does not have a specific value assigned to it. Therefore, it cannot be evaluated as true or false. Hence, it is not a valid statement.

Submit
14. Ako je skup A podskup skupa B onda su:

Explanation

If set A is a subset of set B, it means that all elements of set A are also elements of set B. Therefore, the correct answer is "svi elementi skupa A istovremeno i elementi skupa B" which translates to "all elements of set A are simultaneously elements of set B".

Submit
15. Skupovnu relaciju jednako definišemo pomoću logičke operacije :

Explanation

The correct answer is "ekvivalencije" because the question is asking for the logical operation that defines the relation "Skupovna relacija jednako" (set equality relation). The relation of set equality is defined using the logical operation of equivalence, where two sets are considered equal if and only if they have exactly the same elements.

Submit
16. Koji od navedenih  zapisa predstavljaju dovoljan uslov za rečenicu x  je pozitivan broj.

Explanation

The correct answer is "x je vece od 1" and "x je vece od 2" because both statements indicate that x is greater than a positive number, which satisfies the condition of x being a positive number.

Submit
17. Matematicka logika je uticala na razvoj

Explanation

Matematicka logika je uticala na razvoj digitalnih elektronskih racunara. (Mathematical logic has influenced the development of digital electronic computers.) This answer correctly identifies the impact of mathematical logic on the development of digital electronic computers. Mathematical logic provided the foundation for the design and functioning of computers, enabling the creation of complex algorithms and logical operations.

Submit
18. Kombinatorika se bavi raspoređivanjem elemenata u:

Explanation

Kombinatorika se bavi raspoređivanjem elemenata u konačnim skupovima. To znači da se proučava način na koji se elementi mogu organizovati ili aranžirati unutar skupa koji ima konačan broj elemenata. Ova grana matematike se bavi brojanjem, kombinacijama i permutacijama elemenata u skupovima kako bi se izračunale različite mogućnosti raspoređivanja.

Submit
19. Skupovnu relaciju podskup definišemo pomoću logičke operacije :

Explanation

The correct answer is "implikacije." A relation can be defined as a subset of a Cartesian product of two sets. In the case of the implication operation, the relation is defined based on the truth values of two propositions. If the antecedent proposition is true, then the consequent proposition must also be true for the relation to hold. If the antecedent is false, the relation is considered true regardless of the truth value of the consequent. Therefore, the implication operation is used to define the subset relation in this context.

Submit
20. Tautologije je formula koja je

Explanation

A tautology is a formula that is always true. This means that regardless of the truth values assigned to its variables, the formula will always evaluate to true. Therefore, the correct answer is "uvek tacna" which translates to "always true" in English.

Submit
21. Matematicka logika se intezivno razvija od:

Explanation

Mathematical logic began to develop intensively in the early 19th century. This period marked significant advancements in the field, with the work of mathematicians such as George Boole and Augustus De Morgan laying the foundations for modern logic. The other options mentioned (4 centuries BC, 17th century, and 7th century) are not accurate in terms of the timeline of the development of mathematical logic.

Submit
22. Injekcija je:

Explanation

The correct answer is "1-1 preslikavanje." In mathematics, a 1-1 preslikavanje refers to a one-to-one mapping or injection. This means that each element in the domain is uniquely mapped to an element in the codomain, and no two elements in the domain are mapped to the same element in the codomain.

Submit
23. Koliko mogucnosti ima iskazna tablica koja ima 4 iskazna slova (redova)

Explanation

The question asks for the number of possibilities for a truth table with 4 propositional letters. In a truth table, each propositional letter can take on two possible truth values (true or false), and since there are 4 propositional letters, there are 2^4 = 16 possible combinations of truth values. Therefore, the correct answer is 16.

Submit
24. Kombinatorika se bavi odredjivanjem broja:

Explanation

Kombinatorika se bavi određivanjem broja različitih rasporeda elemenata nekog skupa. Ova grana matematike proučava načine na koje se elementi mogu organizovati ili kombinovati na različite načine, bez obzira na redosled ili ponavljanje elemenata. Ova definicija se slaže sa odgovorom "različitih rasporeda elemenata nekog skupa".

Submit
25. Funkcija u odnosu na relaciju je:

Explanation

The given correct answer for this question is "uži pojam". This means that the function is a narrower concept compared to the relation. In other words, a function is a specific type of relation where each input has exactly one output, while a relation is a more general concept that can have multiple outputs for a single input. Therefore, the function is a subset or a narrower concept within the broader concept of relation.

Submit
26. Različiti rasporedi u kombinatorici  su:

Explanation

The given answer lists different types of arrangements in combinatorics. Permutations refer to the arrangement of objects in a specific order, variations refer to the arrangement of objects where the order matters but some objects may be repeated, and combinations refer to the arrangement of objects where the order does not matter and no objects are repeated. However, "komutacije" is not a term commonly used in combinatorics, so it is likely a typo or an incorrect term.

Submit
27. Unarne logičke operacije su:

Explanation

The correct answer is "negacija" because negacija is a unary logical operation that represents the opposite or negation of a proposition. It takes a single input and produces the opposite truth value as the input.

Submit
28. Konjukcija je:

Explanation

The correct answer is "tacna je kada su iskazna slova tacna." This means that a conjunction is true only when both of the propositional letters (or variables) are true. In other words, for a conjunction to be true, both statements connected by the conjunction must be true. If either or both of the statements are false, then the conjunction is false.

Submit
29. Ekvivalencija je:

Explanation

The correct answer is "tačna je kada iskazna slova imaju istu istinitosnu vrednost." This means that equivalence is true when the propositional letters have the same truth value.

Submit
30. Surjekcija je:

Explanation

The correct answer is "na preslikavanje." This means that the function is onto, or that every element in the range has a corresponding element in the domain. In other words, every element in the codomain is mapped to by at least one element in the domain.

Submit
31. Grafici inverznih funkcija su:

Explanation

The inverse functions are symmetric with respect to the bisector of the first and third quadrants. This means that if a point (x, y) lies on the graph of the inverse function, then the point (-x, -y) also lies on the graph. In other words, if (x, y) is a solution to the inverse function, then (-x, -y) is also a solution. This symmetry is not present with respect to the x-axis, y-axis, or the origin.

Submit
32. Prioritet logičkih operacija je sledeći:

Explanation

The given answer states that the highest priority is given to negation, followed by either disjunction or conjunction, and then implication or equivalence. This means that when evaluating logical operations, negation should be performed first, followed by either disjunction or conjunction, and finally implication or equivalence.

Submit
33. Klase ekvivalencije predstavljaju razlaganje datog skupa na:

Explanation

Klase ekvivalencije predstavljaju razlaganje datog skupa na disjunktne poskupove. To znači da se skup deli na grupe elemenata koji su međusobno ekvivalentni, gde svaka grupa sadrži elemente koji su slični jedni drugima, ali se razlikuju od elemenata u drugim grupama. Ove grupe su disjunktne, što znači da se ne preklapaju i ne dele zajedničke elemente. Klase ekvivalencije su osnovni koncept u teoriji skupova i igraju važnu ulogu u mnogim matematičkim disciplinama.

Submit
34. Obrazac za izačunavanje permutacija mora se dokazatati:

Explanation

The correct answer is "principom matematičke indukcije" because the calculation of permutations involves proving a statement for all possible values of a variable, typically using a base case and an inductive step. This method allows for a systematic and rigorous proof by considering the smallest possible case and then showing that if the statement holds for a particular value, it also holds for the next value. Therefore, the principle of mathematical induction is the appropriate method for proving the calculation of permutations.

Submit
35. Osobina tranzitivnosti povezuje :

Explanation

The property of transitivity connects three elements of a set. This means that if element A is related to element B, and element B is related to element C, then element A is also related to element C. Therefore, the correct answer is "tri elementa skupa" (three elements of a set).

Submit
36. Iskazna slova se obelezavaju:

Explanation

The correct answer is "malim slovima abecede." This means that lowercase letters of the alphabet are used to mark statements. This is a common convention in writing, where lowercase letters are used for regular text while uppercase letters are used for emphasis or headings.

Submit
37. Za grafičko predstavljanje skupova koriste se:

Explanation

Venovi dijagrami su grafikoni koji se koriste za vizualno prikazivanje skupova i njihovih odnosa. Ovi dijagrami se sastoje od preklapajućih krugova koji predstavljaju skupove, a presečni delovi krugova predstavljaju presek između skupova. Ovaj način predstavljanja skupova omogućava jasno i intuitivno razumevanje njihovih odnosa i preseka. Stoga, venovi dijagrami su odgovor na pitanje.

Submit
38. Osnovne logicke operacije su:

Explanation

The correct answer is "disjunkcija i konjukcija, implikacija i ekvivalencija." The explanation is that the basic logical operations are union and intersection, which are used in set theory. However, in propositional logic, the basic logical operations are disjunction (also known as "or") and conjunction (also known as "and"), which are used to combine propositions. Additionally, implication and equivalence are also basic logical operations in propositional logic, where implication represents "if...then" statements and equivalence represents "if and only if" statements.

Submit
39. Binarne logicke operacije su:

Explanation

The correct answer is "disjunkcija, konjukcija, ekvivalencija." In English, this translates to "disjunction, conjunction, equivalence." These are the three basic binary logical operations. Disjunction represents the logical OR operation, where at least one of the operands must be true for the result to be true. Conjunction represents the logical AND operation, where both operands must be true for the result to be true. Equivalence represents the logical equivalence operation, where the two operands have the same truth value.

Submit
40. Skup vrednosti nezavisno promenljive x za koje je definisana funkcija nazivamo:

Explanation

The correct answer is "domen, oblast definisanosti funkcije". The domain of a function refers to the set of all possible input values for the independent variable, while the range or "skup vrednosti funkcije" refers to the set of all possible output values. The "oblast definisanosti funkcije" refers to the set of all input values for which the function is defined or can be evaluated.

Submit
41. Realnih brojeva ima isto koliko i :

Explanation

The number of real numbers is equal to the number of points on the number line. This is because every point on the number line represents a unique real number, and vice versa. Therefore, the number of real numbers is the same as the number of points on the number line.

Submit
42. Relacije su:

Explanation

The given answer states that the relationships are "parallel" and "normal." This suggests that the relationships being referred to in the question are related to geometric or mathematical concepts. "Parallel" typically refers to lines or objects that are equidistant and never intersect, while "normal" can mean perpendicular or at right angles. Therefore, the relationships being described in this context could be referring to the orientation or alignment of objects or lines in a geometric or mathematical context.

Submit
43. Relacija ekvivalencije je:

Explanation

The correct answer is "jednako, podudarno" because a relation of equivalence means that it satisfies three properties: reflexivity (every element is related to itself), symmetry (if a is related to b, then b is related to a), and transitivity (if a is related to b and b is related to c, then a is related to c). The terms "jednako" (equal) and "podudarno" (congruent) capture the idea of these properties, as two elements that are equal or congruent satisfy the properties of an equivalence relation.

Submit
44. Negacija recenice: Postoje prirodni brojevi koji su veci od 10.

Explanation

The given correct answer states that "svi prirodni brojevi nisu veci od 10" which translates to "not all natural numbers are greater than 10". This is the correct negation of the original statement "Postoje prirodni brojevi koji su veci od 10" which means "There exist natural numbers that are greater than 10".

Submit
45. Pitagorina teorema je oblika:

Explanation

The correct answer is "Ekvivalencije" because the question is asking for the form of the Pythagorean theorem. The Pythagorean theorem states that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides. Therefore, the Pythagorean theorem can be expressed as an equivalence statement, where the two sides of the equation are equivalent to each other.

Submit
46. Relacija je u odnosu na funkciju:

Explanation

The correct answer is "širi pojam" because the term "relacija" refers to a broader concept or category compared to the term "funkcija". In other words, a "relacija" can encompass multiple functions within it, while a "funkcija" is a specific type of relation with a defined set of rules and properties. Therefore, "širi pojam" accurately describes the relationship between the two terms.

Submit
47. Koliko ima permutacija od elementa a,a,b,b

Explanation

The number of permutations of the elements a,a,b,b can be calculated using the formula for permutations with repetition. In this case, there are 4 elements in total, with 2 repetitions of the letter a and 2 repetitions of the letter b. The formula for permutations with repetition is n! / (n1! * n2! * ... * nk!), where n is the total number of elements and n1, n2, etc. are the repetitions of each element. Applying this formula, we get 4! / (2! * 2!) = 24 / (2 * 2) = 6. Therefore, there are 6 permutations of the given elements.

Submit
48. Relacije su:

Explanation

The correct answer is "podskup Dekartovog proizvoda dva skupa" which translates to "subset of the Cartesian product of two sets". This means that relations are a set of ordered pairs where the first element is from the first set and the second element is from the second set. In other words, relations are a subset of the Cartesian product of the two sets.

Submit
49. Funkcija je preslikavanje kod koga

Explanation

The correct answer is "jednoj vrednosti promenljive x odgovara jedna vrednost promenljive y". This means that for each value of variable x, there is only one corresponding value of variable y. In other words, each input value has a unique output value in this function.

Submit
50. Koja od navedenih apisa predstavljaju dovoljan uslov za recenicu: x je broj deljiv 10.

Explanation

The given answer states that for the sentence "x is a number divisible by 10" to be true, two conditions must be satisfied. First, the last digit of x must be 0, and second, x must be divisible by 20. This answer is correct because if the last digit of a number is 0, it means that the number is divisible by 10. Additionally, if a number is divisible by 20, it is also divisible by 10. Therefore, both conditions together are sufficient to conclude that x is a number divisible by 10.

Submit
51. Domen funkcije je:

Explanation

The domain of a function refers to the set of input values (independent variable) for which the function is defined. In this case, the correct answer states that the domain of the function is the set of values of the independent variable x for which the function is defined. This means that the function is only defined for certain values of x and not for all possible values.

Submit
52. Kodomen funkcije je:

Explanation

The correct answer is "skup vrednosti zavisno promenljive y za koje je definisana funkcija" which translates to "the set of values dependent on the variable y for which the function is defined." This means that the function is defined for certain values of variable y, and the set of all those values is the domain of the function.

Submit
53. Ekvivalencija p <=> q se moze procitati i kao

Explanation

The correct answer is "p je potreban i dovoljan uslov za q" and "p akko q". These statements indicate that p is both necessary and sufficient for q. In other words, if p is true, then q must also be true, and if q is true, then p must also be true. This shows a bidirectional relationship between p and q, where they depend on each other for their truth values.

Submit
54. Tautologije predstavljaju:

Explanation

Tautologije su tvrdnje koje su uvijek istinite, neovisno o unesenim podacima. One se mogu smatrati zakonima jer predstavljaju opća pravila koja vrijede bez obzira na kontekst. Također, mogu se smatrati točnim tvrdnjama za bilo koji unos podataka jer će uvijek biti istinite, bez obzira na vrijednost podataka.

Submit
55. Binomni obrazac mora se dokazatati:

Explanation

The correct answer is "principom matematičke indukcije." The principle of mathematical induction is a method used to prove statements about natural numbers. It involves proving a base case and then showing that if the statement holds for a particular number, it also holds for the next number. This process is repeated until the desired statement is proven for all natural numbers.

Submit
56. Leksikografski poredak kod definisanja rasporeda znači:

Explanation

The correct answer is "slova poređati uzlazno po azbuci". Leksikografski poredak refers to arranging letters in ascending order according to the alphabet.

Submit
57. Aristotel je definisao pravila:

Explanation

Aristotel je definisao pravila deduktivnog zaključivanja. Deduktivno zaključivanje je proces izvođenja novih informacija iz postojećih činjenica i pretpostavki putem logičkih pravila. Aristotel je razvio sistem logike koji je uključivao syllogism, koji je bio osnova za deduktivno zaključivanje. Ova pravila omogućavaju da se iz općih pretpostavki izvedu specifični zaključci. Dakle, Aristotel je bio pionir u definiranju pravila deduktivnog zaključivanja.

Submit
58. Tvorac beskonačne teorije skupova je:

Explanation

Kantor is the correct answer because he was a Russian mathematician who developed the theory of sets, known as set theory. He made significant contributions to the understanding of infinite sets and introduced the concept of different sizes of infinity. His work laid the foundation for modern set theory and had a profound impact on the field of mathematics.

Submit
59. Skup je prebrojiv ako se:

Explanation

The correct answer is "može poređati u niz, ako postoji bijekcija sa skupom N." This means that a set is countable if it can be ordered in a sequence and if there exists a bijection (a one-to-one correspondence) with the set of natural numbers (N). This definition aligns with the concept of countability in set theory, where countable sets have a one-to-one correspondence with the natural numbers. Therefore, if a set can be ordered in a sequence and there is a bijection with the set of natural numbers, it is considered countable.

Submit
60. Kardinalni broj je:

Explanation

The correct answer is a) broj elemenata konačnog skupa. A cardinal number refers to the number of elements in a finite set. It is a way to quantify the size or magnitude of a set by assigning a unique cardinal number to it. Therefore, the cardinal number is directly related to the number of elements in a set, specifically a finite set.

Submit
61. Relacija poredka je :

Explanation

The relation of order "manje ili jednako" means "less than or equal to" in English. It indicates that one element is either less than or equal to the other element in a given set. This relation is used to compare the magnitude or value of two elements and determine their order in terms of size.

Submit
62. Prazan skup je:

Explanation

The correct answer is "skup bez elemenata". This is because "prazan skup" translates to "empty set" in English, which is a set that does not contain any elements. Therefore, the correct answer is the one that states "skup bez elemenata". The other options do not accurately describe an empty set.

Submit
63. Osobine relacije ekvivalencije su :

Explanation

The given answer states that the characteristics of an equivalence relation are reflexivity, symmetry, and transitivity. Refleksivnost means that every element is related to itself. Simetricnost means that if two elements are related, then their order does not matter. Tranzitivnost means that if two elements are related and the second element is related to a third element, then the first element is also related to the third element. The answer does not mention antisimetricnost, which is the property that states if two elements are related in both directions, then they must be the same element.

Submit
64. 'Trougao je jednakokrak i nije jednakostraničan'. Koja od narednih rečenica je njen potreban i dovoljan uslov:

Explanation

For a triangle to be isosceles and not equilateral, it must have two equal sides. Additionally, an isosceles triangle must have exactly one axis of symmetry. The other options, such as equal angles or one right angle, are not necessary and sufficient conditions for an isosceles triangle.

Submit
65. Da bi neka funkcija imala inverznu funkciju, mora da bude:

Explanation

In order for a function to have an inverse function, it must be both a one-to-one (injective) and onto (surjective) mapping. A one-to-one mapping means that each element in the domain maps to a unique element in the range, and an onto mapping means that every element in the range is mapped to by at least one element in the domain. Therefore, the correct answer is "1-1 and onto mapping".

Submit
66. U kombinacijama bez  ponavljanja elementa :

Explanation

In combinations without repetition, the number of elements in a class is always less than or equal to the number of elements in the set. This is because in combinations without repetition, each element can only be chosen once, so the number of ways to choose elements in a class is limited. Therefore, the number of elements in a class cannot be greater than the number of elements in the set.

Submit
67. Ako su vrednosti x i y u relaciji, onda uređenom paru (x,y) pridružujemo:

Explanation

When the values of x and y are in a relation, we assign the value "tačno" (true) to the ordered pair (x,y). This means that the relation holds true for the given values of x and y.

Submit
68. Skupovi imaju isti kardinalni broj ako postoji :

Explanation

Two sets have the same cardinality if there exists a bijection (a one-to-one and onto mapping) between them. This means that each element in one set is paired with a unique element in the other set, and vice versa. Therefore, a bijection is the correct answer because it ensures that every element in one set is accounted for in the other set, and there are no extra or missing elements.

Submit
69. Skup spada u :

Explanation

The correct answer is "elementarne pojmove koji se ne definišu". This means that a set belongs to elementary concepts that are not defined. In other words, a set is considered to be a basic concept that is not further explained or defined in terms of simpler concepts.

Submit
70. Istinitosna vrednost iskaza je:

Explanation

The correct answer is "tacno i netacno, 1 i 0, true i false." This is because in logic and programming, there are two possible boolean values: true and false, which can also be represented as 1 and 0. Therefore, the statement "tacno i netacno, 1 i 0, true i false" accurately represents the true values of an expression.

Submit
71. Disjunktni skupovi su oni:

Explanation

The correct answer is "čiji je presek prazan skup" which translates to "whose intersection is an empty set." This means that the elements in the two sets being compared have no common elements, resulting in an empty set when their intersection is taken.

Submit
72. Prvu aksiomatiku teorije skupova dao je:

Explanation

Zermelo is the correct answer because he is credited with formulating the first axiomatic set theory in the early 20th century. His work laid the foundation for modern set theory and had a significant impact on the development of mathematics. Both Kantor and Gödel made important contributions to set theory, but Zermelo's work predates theirs and is considered the first systematic formulation of the theory. Koen, on the other hand, is not known for his contributions to set theory.

Submit
73. Kardinalni broj skupa prirodnih brojeva je:

Explanation

The correct answer is "alef nula" because the cardinality of the set of natural numbers is denoted by aleph-null, which represents the size or number of elements in a set. Additionally, the set of even natural numbers has the same cardinality as the set of natural numbers, which means they can be put into a one-to-one correspondence.

Submit
74. Primeniti de Morganov zakon na sledeću rečenicu: 2 ili 3 je delilac broja 6

Explanation

not-available-via-ai

Submit
75. Raselov paradoks se može iskazati na razne načine:

Explanation

The correct answer is "paradoks biblioteke, paradoks berberina". This suggests that the Raselov paradox can be expressed in various ways, such as the paradox of the library and the paradox of the barber. These examples likely refer to famous paradoxes that involve logical contradictions or self-referential statements. However, without further context or information about these specific paradoxes, it is difficult to provide a more detailed explanation.

Submit
76. Implikacija p => q se moze procitati i kao

Explanation

The correct answer is "Ako p onda q, Iz p sledi q, p je pretpostavka posledice q." This is because the given statement "Implikacija p => q se moze procitati i kao" is translated to "Implication p => q can be read as." The options provided in the answer are different ways to interpret or read the implication statement, and they all convey the same meaning.

Submit
77. Osobine relacije poredka su:

Explanation

The correct answer is refleksivnost, tranzitivnost, antisimetricnost.

The properties of a relation of order are as follows:
- Refleksivity: Every element is related to itself.
- Transitivity: If element A is related to element B, and element B is related to element C, then element A is also related to element C.
- Antisymmetry: If element A is related to element B, and element B is related to element A, then A and B are the same element.

These properties are essential for a relation to be considered an order relation.

Submit
78. Varijacija druge klase bez ponavljanja elemenata skupa {1,2,3} ima :

Explanation

The variation of the second class without repetition of elements from the set {1, 2, 3} can be calculated using the formula n!/(n-r)!, where n is the number of elements in the set and r is the number of elements in each variation. In this case, n = 3 and r = 2. Therefore, the calculation would be 3!/(3-2)! = 3!/1! = 3. So, the correct answer is 3.

Submit
79. Dekartov proizvod skupova je:

Explanation

The correct answer is "skup svih uređenih parova gde je prvi element u paru iz prvog skupa, a drugi element iz drugog skupa." This answer accurately describes the Cartesian product of sets, which is a set of all ordered pairs where the first element in the pair belongs to the first set and the second element belongs to the second set.

Submit
80. Iskaznu formulu cine:

Explanation

The correct answer is "iskazna slova i znaci logičkih operacija" which translates to "propositional variables and logical operators" in English. This answer suggests that in the given context, the formula consists of propositional variables (also known as atomic propositions or basic statements) and logical operators (such as conjunction, disjunction, implication, etc.) which are used to form compound propositions. The other options mentioned in the question (only 2 propositional variables and logical operators, propositional variables and set operations, and propositional variables, logical operators, and parentheses) do not accurately describe the components of the formula.

Submit
81. Koliko elemenata ima partitivni skup praznog skupa?

Explanation

The partitive set of an empty set has one element. This is because the partitive set of any set includes all of its subsets, and the empty set is a subset of every set, including itself. Therefore, the partitive set of the empty set contains only one element, which is the empty set itself.

Submit
82. Bijekcija je:

Explanation

The correct answer is c) 1-1 and onto mapping, d) bijective mapping. A bijection is a function that is both injective (1-1, meaning each element in the domain maps to a unique element in the codomain) and surjective (onto, meaning every element in the codomain has a preimage in the domain). In other words, a bijection is a function that is both one-to-one and onto. Therefore, the correct answer is c) and d).

Submit
83. Promenljivu y koja pripada kodomenu funkcije nazivamo:

Explanation

The correct answer is "slikom, zavisno promenljivom". In mathematics, the term "kodomena" refers to the set of all possible values that the function can output. Therefore, the variable y, which belongs to the kodomena of the function, is called both "slikom" (image) and "zavisno promenljivom" (dependent variable) because its value depends on the input values of the function.

Submit
84. Varijacija druge klase sa ponavljenjem elemenata skupa {1,2,3} ima :

Explanation

The variation of the second class with repeated elements from the set {1,2,3} means that we can choose elements from the set with repetition and the order matters. In this case, we have three elements in the set and we can choose any of them multiple times. The number of variations can be calculated by raising the number of elements in the set to the power of the length of the variation. In this case, we have 3 elements and a variation length of 2, so the number of variations is 3^2 = 9.

Submit
85. Varijacije  druge klase bez ponavljanja elemenata skupa {1,2,3} su :

Explanation

The given answer is incorrect. The correct variations of the second class without repetition for the set {1,2,3} are 12, 13, 21, 23, 31, 32.

Submit
86. Realna ravan se može predstaviti kao Dekartov proizvod :

Explanation

A real plane can be represented as a Cartesian product of a set of real numbers with itself. This means that each point on the plane can be represented by an ordered pair of real numbers. The first number represents the x-coordinate and the second number represents the y-coordinate. Therefore, the correct answer is "skupa realnih brojeva sa samim sobom" which translates to "set of real numbers with itself".

Submit
87. Partitivni skup je:

Explanation

A partitive set refers to the set that contains all the subsets of a given set. In other words, it is the set that consists of all possible combinations of elements from the original set, including the empty set and the original set itself. This definition aligns with the option "skup svih podskupova datog skupa" which translates to "set of all subsets of the given set" in English.

Submit
88. Kantor je tvorac:

Explanation

The correct answer is "naivne teorije skupova" (naive set theory). This theory was developed by the German mathematician Georg Cantor in the late 19th century. Naive set theory is an informal approach to understanding sets and their properties, without the use of formal mathematical logic or axioms. Cantor's work on naive set theory laid the foundation for the development of axiomatic set theory, which is a more rigorous and formalized approach to the study of sets.

Submit
89. Paskalov trougao daje način određivanja:

Explanation

The correct answer is "svih binomnih koeficijenata binoma" which translates to "all binomial coefficients of a binomial". This suggests that Paskalov trougao (Pascal's triangle) provides a method for determining all the binomial coefficients of a binomial expression. Pascal's triangle is a triangular array of numbers where each number is the sum of the two numbers directly above it. The numbers in the triangle represent the binomial coefficients, which are used in expanding binomial expressions using the binomial theorem.

Submit
90. Koliko elemenata ima partitivni skup P(A), skupa A koji ima dva elementa?

Explanation

The partitive set P(A) is the set of all subsets of A, including the empty set and A itself. Since set A has two elements, there are 2^2 = 4 possible subsets: the empty set, the set A itself, and the subsets containing only one of the elements of A. Therefore, the partitive set P(A) has 4 elements.

Submit
91. Koja od reci treba da stoji umesto tackica u recenici x>6 ..... x>3, tako da recenica bude tacna

Explanation

The correct answer is "Dovoljan, Povlaci." In the given sentence "x > 6 .... x > 3," the missing word should be able to complete the sentence correctly. The word "Dovoljan" means "sufficient" in English, and it fits the context of the sentence because if x is greater than 6, it is sufficient to imply that x is also greater than 3. Additionally, the word "Povlaci" means "implies" in English, and it accurately describes the logical relationship between the two inequalities. Therefore, both "Dovoljan" and "Povlaci" are needed to make the sentence true.

Submit
92. Implikacija p --> q se moze procitati i kao:

Explanation

The correct answer is "q je potreban uslov za p,p je dovoljan uslov za q". This answer correctly states that q is a necessary condition for p, meaning that if q is not true, then p cannot be true. Additionally, it states that p is a sufficient condition for q, meaning that if p is true, then q must also be true.

Submit
93. Funkcija predstavlja preslikavanje elemenata:

Explanation

The correct answer is "bilo koja dva skupa" because the function represents a mapping between any two sets. It does not specify any specific sets or restrict the type of sets that can be mapped. Therefore, it can be any two sets.

Submit
94. Varijacije bez ponavljanja elemenata se računaju po obrascu :

Explanation

The given answer correctly represents the formula for calculating variations without repetition of elements. It shows that the number of variations is equal to the product of n, n-1, n-2, ..., (n-k+1), where n is the total number of elements and k is the number of elements selected for each variation.

Submit
95. Skupovnu operaciju presek definišemo pomoću logičke operacije :

Explanation

The correct answer is "konjukcije" (conjunction). This means that the operation of intersection is defined using the logical operation of conjunction. Conjunction is a logical operation that returns true only if both of its operands are true. In the context of set operations, the intersection of two sets is the set that contains all the elements that are common to both sets. Therefore, the intersection operation can be defined using the logical operation of conjunction, where the two sets are the operands and the resulting set contains the common elements.

Submit
96. Alef-nula je kardinalni broj skupa

Explanation

The correct answer is N,Z. The given statement is in Croatian and translates to "The first cardinal number of the set N, R, I, Z." In mathematics, the set N represents the set of natural numbers (positive integers), and the set Z represents the set of integers (positive and negative whole numbers). Therefore, the first cardinal number of these sets would be the smallest element in each set, which is N for the set of natural numbers and Z for the set of integers.

Submit
97. Negacija recenice: Svi prirodni brojevi su pozitivni.

Explanation

The correct answer is "neki prirodni brojevi nisu pozitivni" and "postoje prirodni brojevi koji nisu pozitivni" because the original statement "Svi prirodni brojevi su pozitivni" is negated to mean "Not all natural numbers are positive." This implies that there are some natural numbers that are not positive, which is represented by the correct answers.

Submit
98. Zakon komutacije važi za:

Explanation

The correct answer is "presek dva skupa" and "uniju dva skupa". The "zakon komutacije" or "commutative law" states that the order of the sets does not affect the result when performing the intersection or union operation. In other words, the result of intersecting or uniting two sets remains the same regardless of the order in which the sets are considered.

Submit
99. Matematička logika je:

Explanation

Matematička logika je matematička disciplina koja je uvela strogost u definisanje pojmova. Ova disciplina se bavi proučavanjem matematičkih sistema, dok se primena logike u matematici odnosi na korišćenje logičkih principa i zakona u matematičkim dokazima. Matematička logika se takođe može smatrati delom filozofije, ali to nije jedino ispravno objašnjenje za ovaj pojam.

Submit
100. Varijacija je:

Explanation

This answer states that variation is the arrangement of elements of a subset of a given set, taking into account the order of the elements. This means that the order in which the elements of the subset are arranged is important in determining the variation.

Submit
101. Kontrapozicija rečenice: Ako znam, onda ću položiti test.glasi:

Explanation

The given answer states that if the person does not pass the test, then they do not know the material. This is the contrapositive of the original statement. According to the original statement, if the person knows the material, then they will pass the test. Therefore, if they do not pass the test, it implies that they do not know the material.

Submit
102. Binomni koeficijenti imaju osobinu:

Explanation

Binomni koeficijenti imaju osobinu simetričnosti. To znači da su vrijednosti binomnih koeficijenata jednake ako se zamijene indeksi. Na primjer, binomni koeficijent C(n, k) je jednak binomnom koeficijentu C(n, n-k). Ova simetričnost omogućava jednostavnije računanje binomnih koeficijenata i korisna je u različitim matematičkim i statističkim problemima.

Submit
103. Kod permutacija i kombinacija:

Explanation

In permutations, we use all the elements of the set and arrange them in different orders. On the other hand, in combinations, we select subsets of the set without considering the order. Therefore, the correct answer states that in permutations, we use all the elements of the set, while in combinations, we use subsets of the set.

Submit
104.
  1. Predikatske formule se grade pomoću :

Explanation

Predikatske formule se grade pomoću konstanti, promenljivih i kvantora. Konstante su određene vrednosti koje se koriste u formulama, promenljive su simboli koji predstavljaju objekte ili vrednosti koje mogu biti različite u različitim instancama formule, dok su kvantori simboli koji se koriste za opisivanje količine elemenata koji zadovoljavaju određeni uslov u formuli. Relacijski znaci, s druge strane, nisu dozvoljeni u predikatskim formulama.

Submit
105.  Kantorova hipoteza kontinuma kaže da je:

Explanation

The correct answer states that the cardinality of any set A is between the cardinality of the set of natural numbers and the cardinality of the set of real numbers. This is known as the Continuum Hypothesis. It suggests that there is no set whose cardinality is larger than the set of natural numbers but smaller than the set of real numbers. This hypothesis was formulated by Georg Cantor and is still an open question in set theory.

Submit
106. Promenljivu x koja pripada domenu funkcije nazivamo:

Explanation

The correct answer is "originalom, nezavisno promenljivom." In mathematics, the variable x that belongs to the domain of a function is called the "original" or "independent variable." This is because it is the variable that we can freely choose or manipulate to obtain different values. Therefore, it is also referred to as the "nezavisno promenljivom" in Serbian.

Submit
107. Naivna teorija skupova:

Explanation

The correct answer is "daje opise skupova, definiše skupove preko osobina". This is because the given statement mentions that "Naivna teorija skupova" gives descriptions of sets and defines sets based on their properties. Therefore, the answer options that include these descriptions are the correct ones.

Submit
108. U varijacijama bez  ponavljanja elementa :

Explanation

In variations without repetition, the number of elements in a class is always less than or equal to the number of elements in the set. This is because in variations without repetition, each element can only be chosen once, so the number of elements in the class cannot exceed the number of elements in the set. Therefore, the correct answer is "broj elementa klase je manji ili jednak, od broja elemenata skupa" which translates to "the number of elements in the class is less than or equal to the number of elements in the set."

Submit
109. Permutacije bez ponavljanja elemenata se računaju po obrascu :

Explanation

The given explanation is providing the formula for calculating permutations without repetition. It states that the number of permutations of n elements is equal to n factorial, which is represented as P(n) = n!. It further explains that the factorial is calculated by multiplying n with all the numbers less than it, down to 1. Hence, P(n) can be expressed as n(n-1)(n-2)...2.1, where each term represents the number of choices available for each position in the permutation.

Submit
110. Permutacije bez ponavljanja elemenata  su:

Explanation

not-available-via-ai

Submit
111. Kontinum-c je kardinalni broj skupa

Explanation

The correct answer is "R,I" because "Kontinum-c" refers to the cardinality of the set of real numbers, which is represented by the symbol "R" in mathematics. Additionally, "I" represents the set of imaginary numbers. Therefore, the correct answer includes both "R" and "I" to indicate the cardinality of the set of real and imaginary numbers.

Submit
112. Kombinacije druge klase bez ponavljanja elemenata skupa {1,2,3} su :

Explanation

The correct answer is a list of combinations of the second class without repetition of elements from the set {1,2,3}. The combinations listed are 12, 13, and 23, which are all possible combinations of two elements from the set.

Submit
113. Prirodnih brojeva ima isto koliko i :

Explanation

The statement "Prirodnih brojeva ima isto koliko i" translates to "There are the same number of natural numbers as." The answer options are "parnih prirodnih brojeva" (even natural numbers), "neparnih prirodnih brojeva" (odd natural numbers), "celih brojeva" (integers), and "realnih brojeva" (real numbers). The correct answer is that there are the same number of even and odd natural numbers as there are natural numbers, which means that the quantity of even and odd natural numbers combined is equal to the quantity of all natural numbers.

Submit
114. Simetrična razlika skupova A i B je:

Explanation

The symmetric difference of sets A and B is the union of the difference of set A with B and the difference of set B with A.

Submit
115. Koliki je kardinalni broj praznog skupa?

Explanation

The cardinality of an empty set is zero because it does not contain any elements.

Submit
116. Skupovnu operaciju uniju definišemo pomoću logičke operacije :

Explanation

The correct answer is "disjunkcije". The union operation is defined using the logical operation of disjunction, which combines two sets and returns a new set that contains all the elements from both sets.

Submit
117. Osobine relacija su:

Explanation

The given answer states that the properties of relations are reflexivity, symmetry, and antisymmetry. Reflexivity means that every element is related to itself. Symmetry means that if element A is related to element B, then element B is also related to element A. Antisymmetry means that if element A is related to element B and element B is related to element A, then A and B are the same element. These properties help describe the behavior and characteristics of relations.

Submit
118. Konverzacija recenice: Ako znam, onda cu poloziti test. glasi:

Explanation

The given answer states that "if I pass the test, then I know." This is a valid conclusion based on the given conversation. In the conversation, it is stated that "if I know, then I will pass the test" and "if I don't know, then I will not pass the test." Therefore, if someone does pass the test, it can be inferred that they must know the material.

Submit
119. Permutacije bez ponavljanja elemenata skupa {1,2,3} su:

Explanation

not-available-via-ai

Submit
120.
  1. Ako je  je bijekcija, i zadovoljena je veza  onda je preslikavanje I:

Explanation

The given question states that if a bijection is satisfied, then the mapping I is. The answer "identicko preslikavanje" translates to "identity mapping" in English. In mathematics, an identity mapping is a function that maps each element of a set to itself. Since the question states that the bijection is satisfied, it implies that the mapping I is the identity mapping, where each element is mapped to itself.

Submit
121. Kombinacija druge klase bez ponavljanja elemenata skupa {1,2,3} ima :

Explanation

The given answer, 3, is the correct explanation. The combination of the second class without repeating elements from the set {1, 2, 3} has 3 possible combinations: {1, 2}, {1, 3}, and {2, 3}.

Submit
122. Rene Dekart je tvorac:

Explanation

Rene Dekart je tvorac analitičke geometrije. Analitička geometrija je grana matematike koja se bavi proučavanjem geometrijskih objekata koristeći algebarske metode. Dekart je u svojem djelu "Geometrija" prvi put uveo koordinatni sustav u geometriju, omogućivši tako da se geometrijski problemi rješavaju algebarskim putem. Ova inovacija je imala veliki utjecaj na razvoj matematike i otvorila je put za daljnje istraživanje i razumijevanje geometrijskih problema.

Submit
123. Relacija < poseduje osobine:

Explanation

The given correct answer is "tranzitivnosti" which means "transitivity" in English. Transitivity is a property that states if A has a certain property in relation to B, and B has the same property in relation to C, then A also has the same property in relation to C. In other words, if A is related to B and B is related to C, then A is also related to C.

Submit
124. Koliko elemenata ima partitivni skup P(A), skupa A koji ima tri elementa?

Explanation

The partitive set P(A) is the set of all subsets of set A. Since set A has three elements, there are 2^3 = 8 subsets of A. Therefore, the partitive set P(A) also has 8 elements.

Submit
125. Kombinacija je:

Explanation

The correct answer is "raspored elemenata podskupa datog skupa, bez obzira na redosled elemenata". This means that a combination refers to the arrangement of elements in a subset of a given set, regardless of the order of the elements. In other words, the order in which the elements are arranged does not matter in a combination.

Submit
126. Permutacije bez ponavljanja elemenata predstavljaju :

Explanation

Permutacije bez ponavljanja elemenata predstavljaju bijektivno preslikavanje skupa u samog sebe. This means that each element in the set is mapped to a unique element in the same set, and every element in the set is included in the mapping. There are no repeated elements in the mapping.

Submit
127. Cuveni anticki Zenonovi paradoksi su:

Explanation

The correct answer is Ahil i kornjaca, strela, stadion. These are famous paradoxes attributed to the ancient Greek philosopher Zeno of Elea. The paradox of Achilles and the tortoise states that in a race, if Achilles gives the tortoise a head start, he will never be able to catch up with it. The arrow paradox argues that motion is an illusion, as an arrow in flight is always at rest at any given instant. The stadium paradox suggests that a runner will never reach the end of a racecourse, as they must first reach the halfway point, then the halfway point of the remaining distance, and so on.

Submit
128. Izraz za izračunavanje binomnog koeficijenta, isti je kao izraz za izračunavanje:

Explanation

The expression for calculating the binomial coefficient is the same as the expression for calculating combinations without repetition of elements.

Submit
129. Za Dekartov proizvod skupova:

Explanation

The given correct answer states that the commutative law does not hold for the Cartesian product of sets. This means that the order in which the elements are taken from the sets does matter when performing the Cartesian product. In other words, if we have two sets A and B, the Cartesian product of A and B is not equal to the Cartesian product of B and A.

Submit
130. Egzistencijalni kvantor se cita:

Explanation

The correct answer is "postoji, neki". This is because "postoji" means "there exists" in English, while "neki" means "some" or "a certain" in English. Therefore, when combined, "postoji, neki" can be translated as "there exists, some" or "there exists, a certain". This combination is commonly used to introduce the existential quantifier in logic and mathematics, indicating that there is at least one element that satisfies a given condition.

Submit
131. Koja od reci treba da stoji umesto tackica u recenici, " X pripada skupu N .... X pripada skupu Z", tako da recenica bude tacna

Explanation

The correct answer is "Dovoljan, Povlaci". The word "dovoljan" means "sufficient" in English, and "povlaci" means "implies". Therefore, the sentence can be translated as "X belongs to set N sufficient implies X belongs to set Z". This means that if X belongs to set N, it is sufficient to conclude that X belongs to set Z.

Submit
132. Relacije se mogu predstaviti:

Explanation

Relations can be represented using ordered pairs, tables, and graphs. Ordered pairs are a way to represent a relation by pairing elements from two sets. Tables can be used to display the inputs and outputs of a relation in a systematic manner. Graphs provide a visual representation of a relation, where the elements are plotted on a coordinate plane. Each of these methods offers a different way to represent relations and can be used depending on the context and purpose of the representation.

Submit
133. Inverzija recenice: Ako znam, onda cu poloziti test, glasi:

Explanation

The correct answer is "ako ne znam, onda necu poloziti test" because it accurately represents the inversion of the given sentence. The original sentence states that "if I know, then I will pass the test," and the correct answer reflects the inversion by stating "if I don't know, then I won't pass the test." This inversion maintains the logical relationship between knowing and passing the test.

Submit
134. Univerzalni kvantor se cita:

Explanation

The correct answer for this question is "svaki, ma koji, bilo koji." These are all different ways to read the universal quantifier in Croatian, which is equivalent to the English word "every" or "any."

Submit
135. Kantorova hipoteza kontinuma  je:

Explanation

The correct answer states that Koen proved that the Cantor's Continuum Hypothesis cannot be proven in the formal system of Zermelo axioms. This implies that the hypothesis is undecidable within that system. Additionally, the answer mentions that the hypothesis is about the possible sizes of infinite sets and that Kantor believed it to be true but was unable to provide a proof for it.

Submit
136. U kombinacijama sa ponavljanjem elementa :

Explanation

In combinations with repetition, the number of elements in the class can be any value. It is not restricted to being the same as the number of elements in the set, smaller or equal to the number of elements in the set, or strictly smaller than the number of elements in the set. Therefore, the number of elements in the class can be any value, making it arbitrary or "proizvoljan" in Croatian.

Submit
137. U matematici postoje elementarni pojmovi koji se ne definišu. To su:

Explanation

In mathematics, there are certain elementary concepts that are considered to be fundamental and are not defined in terms of other concepts. These include the concepts of a point, a set, and a number. A point is a fundamental geometric entity that has no size or dimension. A set is a collection of distinct objects or elements. A number is a mathematical object used to represent quantity or magnitude. These concepts are considered to be basic building blocks in mathematics and are often used to define and describe more complex mathematical structures and relationships.

Submit
138. Raselov paradoks je pokazao da:

Explanation

The correct answer is b) That some sets are not members of themselves and c) That a set cannot be defined by its properties. This is known as Russell's paradox, which was discovered by the philosopher and logician Bertrand Russell. The paradox arises when considering the set of all sets that do not contain themselves as members. If this set is a member of itself, then it should not be a member of itself, leading to a contradiction. This paradox challenges the foundations of set theory and has implications for the logical and philosophical understanding of sets.

Submit
139. Raselov paradoks se svodi na pitanje:

Explanation

The correct answer is "skup svih skupova sadrži sebe kao podskup". This answer is correct because the Russell's paradox, or Raselov paradoks, is a paradox in set theory that arises when we consider the set of all sets that do not contain themselves as a subset. This set leads to a contradiction, as it both contains and does not contain itself. This paradox challenges the foundations of set theory and has important implications for the understanding of sets and their properties. The other options mentioned in the answer are not directly related to the Russell's paradox.

Submit
140. U varijacijama sa ponavljanjem elementa :

Explanation

In variations with repetition, the number of elements in the class can be any value, meaning it is not limited or restricted in any way. Therefore, the number of elements in the class is arbitrary or can be chosen freely.

Submit
141. Čuveni antički Zenonovi paradoksi su:

Explanation

The correct answer is "naivne teorije skupova" (naive set theory). This is because the famous ancient Zeno's paradoxes are related to the concept of sets and their properties. Naive set theory refers to the early approach to understanding sets, where the basic properties and operations of sets were not rigorously defined. Zeno's paradoxes involve infinite sets and the concept of infinity, which are fundamental ideas in set theory. Therefore, the answer "naivne teorije skupova" is the most appropriate explanation for the correct answer.

Submit
142. U binomnoj formuli stepen binoma je:

Explanation

The exponent of a binomial in the binomial formula is always a natural number or a positive integer.

Submit
143. Permutacija je:

Explanation

The correct answer states that a permutation is any arrangement of all the elements of a set. This means that the order of the elements is taken into account when determining the permutation. Therefore, the correct answer suggests that a permutation considers the specific arrangement of elements in a set, regardless of the order in which they appear.

Submit
144. Recenica, 'Ako su prave paralelne, onda one nemaju zajednicke tacke', moze se procitati i :

Explanation

The correct answer is "prave su paralelne, samo ako nemaju zajednicke tacke". This statement accurately represents the given sentence, which states that if lines are parallel, they do not have any common points. The other options do not accurately represent the given sentence.

Submit
145. Obrasci za izračunavanje permutacija sa i bez ponavljanja elenenata su:

Explanation

The correct answer states that the number of permutations with repeated elements must be decreased in relation to the number of permutations without repetition, by the number of permutations of the repeated elements. Conversely, the number of permutations without repetition must be increased in relation to the number of permutations with repetition, by the number of permutations of the repeated elements. This is because when there are repeated elements, the total number of permutations decreases due to the reduced number of unique elements that can be rearranged.

Submit
146. Komplement skupa A u odnosu na skup B je:

Explanation

The correct answer is "dopuna skupa A u odnosu na skup B, postoji samo ako je skup B podskup skupa A." This means that the complement of set A with respect to set B exists only if set B is a subset of set A. In other words, the complement of set A consists of all the elements that are in set B but not in set A.

Submit
147. Ako skupovi imaju isti kardinalni broj onda:

Explanation

If two sets have the same cardinality, it means that they have the same number of elements. This implies that there exists a bijection (a one-to-one correspondence) between the elements of the two sets, which means that every element from one set can be paired with a unique element from the other set. Therefore, the sets are equivalent, they have the same power or size, and there exists a bijection that can map the elements of one set to the elements of the other set.

Submit
148. Ako postoji osobina refleksivnosti:

Explanation

The correct answer is that if there is a reflexive property, then an element of the set is in relation with itself. This means that for every element in the set, there is a pair with the same value for both variables. Additionally, in the table representing the relation, the values on the main diagonal are true.

Submit
View My Results

Quiz Review Timeline (Updated): Jul 22, 2024 +

Our quizzes are rigorously reviewed, monitored and continuously updated by our expert board to maintain accuracy, relevance, and timeliness.

  • Current Version
  • Jul 22, 2024
    Quiz Edited by
    ProProfs Editorial Team
  • Jan 21, 2018
    Quiz Created by
    Djika22
Cancel
  • All
    All (148)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
Skupovi se obeležavaju:
Recenica 2+2=3 je:
Logika je nauka o?
Čuvena misao Rene Dekarta glasi:
Tvorac logike je?
Iskaz se jos naziva:
Skup čine elementi koji:
Po definiciji 0! je:
Prazan skup je skup koji:
Recenica 1+2=3 je:
Sta je relacija:
Iskaz je recenica koja je:
Recenica x+2=3 je:
Ako je skup A podskup skupa B onda su:
Skupovnu relaciju jednako definišemo pomoću logičke operacije...
Koji od navedenih  zapisa predstavljaju dovoljan uslov za...
Matematicka logika je uticala na razvoj
Kombinatorika se bavi raspoređivanjem elemenata u:
Skupovnu relaciju podskup definišemo pomoću logičke operacije...
Tautologije je formula koja je
Matematicka logika se intezivno razvija od:
Injekcija je:
Koliko mogucnosti ima iskazna tablica koja ima 4 iskazna slova...
Kombinatorika se bavi odredjivanjem broja:
Funkcija u odnosu na relaciju je:
Različiti rasporedi u kombinatorici  su:
Unarne logičke operacije su:
Konjukcija je:
Ekvivalencija je:
Surjekcija je:
Grafici inverznih funkcija su:
Prioritet logičkih operacija je sledeći:
Klase ekvivalencije predstavljaju razlaganje datog skupa na:
Obrazac za izačunavanje permutacija mora se dokazatati:
Osobina tranzitivnosti povezuje :
Iskazna slova se obelezavaju:
Za grafičko predstavljanje skupova koriste se:
Osnovne logicke operacije su:
Binarne logicke operacije su:
Skup vrednosti nezavisno promenljive x za koje je definisana funkcija...
Realnih brojeva ima isto koliko i :
Relacije su:
Relacija ekvivalencije je:
Negacija recenice: Postoje prirodni brojevi koji su veci od 10.
Pitagorina teorema je oblika:
Relacija je u odnosu na funkciju:
Koliko ima permutacija od elementa a,a,b,b
Relacije su:
Funkcija je preslikavanje kod koga
Koja od navedenih apisa predstavljaju dovoljan uslov za recenicu: x je...
Domen funkcije je:
Kodomen funkcije je:
Ekvivalencija p <=> q se moze procitati i kao
Tautologije predstavljaju:
Binomni obrazac mora se dokazatati:
Leksikografski poredak kod definisanja rasporeda znači:
Aristotel je definisao pravila:
Tvorac beskonačne teorije skupova je:
Skup je prebrojiv ako se:
Kardinalni broj je:
Relacija poredka je :
Prazan skup je:
Osobine relacije ekvivalencije su :
'Trougao je jednakokrak i nije jednakostraničan'. Koja od...
Da bi neka funkcija imala inverznu funkciju, mora da bude:
U kombinacijama bez  ponavljanja elementa :
Ako su vrednosti x i y u relaciji, onda uređenom paru (x,y)...
Skupovi imaju isti kardinalni broj ako postoji :
Skup spada u :
Istinitosna vrednost iskaza je:
Disjunktni skupovi su oni:
Prvu aksiomatiku teorije skupova dao je:
Kardinalni broj skupa prirodnih brojeva je:
Primeniti de Morganov zakon na sledeću rečenicu: 2 ili 3 je delilac...
Raselov paradoks se može iskazati na razne načine:
Implikacija p => q se moze procitati i kao
Osobine relacije poredka su:
Varijacija druge klase bez ponavljanja elemenata skupa {1,2,3} ima :
Dekartov proizvod skupova je:
Iskaznu formulu cine:
Koliko elemenata ima partitivni skup praznog skupa?
Bijekcija je:
Promenljivu y koja pripada kodomenu funkcije nazivamo:
Varijacija druge klase sa ponavljenjem elemenata skupa {1,2,3} ima :
Varijacije  druge klase bez ponavljanja elemenata skupa {1,2,3}...
Realna ravan se može predstaviti kao Dekartov proizvod :
Partitivni skup je:
Kantor je tvorac:
Paskalov trougao daje način određivanja:
Koliko elemenata ima partitivni skup P(A), skupa A koji ima dva...
Koja od reci treba da stoji umesto tackica u recenici x>6 ........
Implikacija p --> q se moze procitati i kao:
Funkcija predstavlja preslikavanje elemenata:
Varijacije bez ponavljanja elemenata se računaju po obrascu :
Skupovnu operaciju presek definišemo pomoću logičke operacije...
Alef-nula je kardinalni broj skupa
Negacija recenice: Svi prirodni brojevi su pozitivni.
Zakon komutacije važi za:
Matematička logika je:
Varijacija je:
Kontrapozicija rečenice: Ako znam, onda ću položiti test.glasi:
Binomni koeficijenti imaju osobinu:
Kod permutacija i kombinacija:
Predikatske formule se grade pomoću :
 Kantorova hipoteza kontinuma kaže da je:
Promenljivu x koja pripada domenu funkcije nazivamo:
Naivna teorija skupova:
U varijacijama bez  ponavljanja elementa :
Permutacije bez ponavljanja elemenata se računaju po obrascu :
Permutacije bez ponavljanja elemenata  su:
Kontinum-c je kardinalni broj skupa
Kombinacije druge klase bez ponavljanja elemenata skupa {1,2,3} su :
Prirodnih brojeva ima isto koliko i :
Simetrična razlika skupova A i B je:
Koliki je kardinalni broj praznog skupa?
Skupovnu operaciju uniju definišemo pomoću logičke operacije...
Osobine relacija su:
Konverzacija recenice: Ako znam, onda cu poloziti test. glasi:
Permutacije bez ponavljanja elemenata skupa {1,2,3} su:
Ako je  je bijekcija, i zadovoljena je veza  onda je...
Kombinacija druge klase bez ponavljanja elemenata skupa {1,2,3} ima :
Rene Dekart je tvorac:
Relacija < poseduje osobine:
Koliko elemenata ima partitivni skup P(A), skupa A koji ima tri...
Kombinacija je:
Permutacije bez ponavljanja elemenata predstavljaju :
Cuveni anticki Zenonovi paradoksi su:
Izraz za izračunavanje binomnog koeficijenta, isti je kao izraz za...
Za Dekartov proizvod skupova:
Egzistencijalni kvantor se cita:
Koja od reci treba da stoji umesto tackica u recenici, " X...
Relacije se mogu predstaviti:
Inverzija recenice: Ako znam, onda cu poloziti test, glasi:
Univerzalni kvantor se cita:
Kantorova hipoteza kontinuma  je:
U kombinacijama sa ponavljanjem elementa :
U matematici postoje elementarni pojmovi koji se ne definišu....
Raselov paradoks je pokazao da:
Raselov paradoks se svodi na pitanje:
U varijacijama sa ponavljanjem elementa :
Čuveni antički Zenonovi paradoksi su:
U binomnoj formuli stepen binoma je:
Permutacija je:
Recenica, 'Ako su prave paralelne, onda one nemaju zajednicke...
Obrasci za izračunavanje permutacija sa i bez ponavljanja elenenata...
Komplement skupa A u odnosu na skup B je:
Ako skupovi imaju isti kardinalni broj onda:
Ako postoji osobina refleksivnosti:
Alert!

Advertisement