Algebra II Practice Questions For The Final Exam

35 Questions | Total Attempts: 139

SettingsSettingsSettings
Please wait...
Algebra II Practice Questions For The Final Exam

These practice questions are similar in type to the 30 multiple choice questions on your final. Remember that there will also be 30 short answer questions where work justifying your answer will be required. As you take this practice test, think about pacing yourself. In order to complete the final exam, you should be spending less time on multiple choice than short answer. If you take this practice test in one sitting, aim to keep your time under an hour. Cheating on this would just be silly, as it has no direct bearing on your grade in the class. Besides, if you e-mail me a score report with 100% on it, I will expect similar results on your final. :) At the end of the test, please choose the option to e-mail me your certificate of completion. My e-ma


Questions and Answers
  • 1. 
    Choose the graph which best represents the function. f(x)=–2–ex A. B.   C. D.
    • A. 

      A

    • B. 

      B

    • C. 

      C

    • D. 

      D

  • 2. 
    If  is $3000 is invested at a rate of 9%, compounded continuously, find the balance in the account after 5 years. Use the formula A=Pert
    • A. 

      $4615.87

    • B. 

      $5148.02

    • C. 

      $4704.94

    • D. 

      $22,167.17

  • 3. 
    Solve triangle ABC, given that A=48°, B=59°, b=61
    • A. 

      C=73° a=52.89 c=68.06

    • B. 

      C=73° a=70.36 c=78.5

    • C. 

      C=253° a=52.89 c=68.06

    • D. 

      C=253° a=70.36 c=78.5

  • 4. 
    Factor the expression: 25y2–9
    • A. 

      (5y–3)²

    • B. 

      (25y+1)(y–9)

    • C. 

      (5y+3)²

    • D. 

      (5y+3)(5y–3)

  • 5. 
    Simplify the radical expression. 5(√147)(√21)
    • A. 

      108√3

    • B. 

      21√7

    • C. 

      15√3

    • D. 

      105√7

  • 6. 
    Solve the following equation by completing the square: –3x2–30x–15=0
    • A. 

      X=5±2√5

    • B. 

      X=–5±2√5

    • C. 

      X=–5±√30

    • D. 

      X=5±√30

  • 7. 
    Find the maximum value of the equation: y=–4x2+24x–40
    • A. 

      –68

    • B. 

      –4

    • C. 

      –40

    • D. 

      –3

  • 8. 
    Solve for x. 2x2+x=–3
    • A. 

      (1±i√23)/4

    • B. 

      (–1±i√25)/4

    • C. 

      (1±i√25)/4

    • D. 

      (–1±i√23)/4

  • 9. 
    Evaluate the function for t=4 using synthetic division. f(t)=2t3–3t2+2t+7
    • A. 

      98

    • B. 

      95

    • C. 

      104

    • D. 

      15

  • 10. 
    Factor the expression completely. 4x3–8x2+24x
    • A. 

      4x(x–2)(x+6)

    • B. 

      4(x³–2x²+6x)

    • C. 

      4x(x²–2x+6)

    • D. 

      X(4x²–8x+24)

  • 11. 
    Choose the graph that best represents the function. f(x)=2(1/2)x A. B. C. D.
    • A. 

      A

    • B. 

      B

    • C. 

      C

    • D. 

      D

  • 12. 
    Simplify: A. B. C. D.
    • A. 

      A

    • B. 

      B

    • C. 

      C

    • D. 

      D

  • 13. 
    Solve for x.
    • A. 

      1/7

    • B. 

      5/14

    • C. 

      11/14

    • D. 

      1/14

  • 14. 
    A highway map of Ohio has a coordinate grid superimposed on top of the state. Cincinatti is at the point (-1,-3) and Springfield is at the point (8,0). There is a rest area halfway between the cities. Find the coordinates of the rest area, and the distance between Springfield and Cincinnatti, given the scale of 1 unit=6.32 miles
    • A. 

      (7/2,-3/2) 60 miles

    • B. 

      (-3/2,7/2) 60 miles

    • C. 

      (-3/2,7/2) 48 miles

    • D. 

      (7/2,-3/2) 48 miles

  • 15. 
    Choose the equation of the parabola with vertex (0,0) and directrix y=4.
    • A. 

      X=-16y²

    • B. 

      Y=–16x²

    • C. 

      X=4y²

    • D. 

      Y=(–1/16)x²

  • 16. 
    Choose the graph that best represents the given equation: 9x²+16y²=144 A. B. C. D.
    • A. 

      A

    • B. 

      B

    • C. 

      C

    • D. 

      D

  • 17. 
    Find an equation for a parabola with focus (–5,–7)  and vertex (–5,–2).
    • A. 

      Y+2=–1/20(x+5)²

    • B. 

      Y–2=–1/20(x–5)²

    • C. 

      Y+7=–1/20(x+5)²

    • D. 

      X–7=–1/20(y–5)²

  • 18. 
    Write the equation of the parabola in standard form. x²–6x+8y–23=0
    • A. 

      Y–3= 1/8 (x–4)²

    • B. 

      Y–4= –1/8 (x–3)²

    • C. 

      Y–3= –1/8 (x–4)²

    • D. 

      Y–4= –1/8 (x–4)²

  • 19. 
    Choose the equation that best fits the given graph.
    • A. 

      (x+4)²/4–(y–1)²/16=1

    • B. 

      (x–1)²/4–(y+4)²/16=1

    • C. 

      (x–4)²/4–(y+1)²/16=1

    • D. 

      (x+1)²/4+(y-4)²/16=1

  • 20. 
    Classify the following equation. x=y²+9
    • A. 

      Parabola

    • B. 

      Circle

    • C. 

      Ellipse

    • D. 

      Hyperbola

  • 21. 
    Find the first four terms of the sequence given by the equation. tn=n(2n-7)
    • A. 

      –5, –6, –3, 4

    • B. 

      2, –12, –19, –26

    • C. 

      2, 1, 11, 25

    • D. 

      –5, –6, –10, –11

  • 22. 
    Find the sum of the infinite series. 1/4+1/8+1/16+1/32+…
    • A. 

      15/32

    • B. 

      1

    • C. 

      1/2

    • D. 

      1/3

  • 23. 
    Find cos(x) as a fraction in lowest terms.
    • A. 

      5/12

    • B. 

      12/5

    • C. 

      5/13

    • D. 

      12/13

  • 24. 
    A photographer points a camera at a window in a nearby building, forming an angle of 48° with the base of the camera.  If the camera is 50 meters from the building, how high above the platform is the window, to the nearest hundredth?
    • A. 

      0.90 meters

    • B. 

      1.11 meters

    • C. 

      55.53 meters

    • D. 

      45.02 meters

  • 25. 
    Convert 1200° to radians.
    • A. 

      3π/20

    • B. 

      3π/40

    • C. 

      20π/3

    • D. 

      40π/3