What Do You Know About Maris–mcgwire–sosa Pair?

10 Questions | Total Attempts: 103

SettingsSettingsSettings
Please wait...
What Do You Know About Marismcgwiresosa Pair?

Famously inspired by baseball players Roger Maris, Mark McGwire, and Sammy Sosa, Maris–McGwire–Sosa pairs (or MMG pairs/numbers) are used in recreational mathematics to denote a particular situation concerning two consecutive natural numbers. The concept was named so by Mike Keith, an engineer and mathematician from the United States.


Questions and Answers
  • 1. 
    Which pairs are very similar to Maris–McGwire–Sosa pairs?
    • A. 

      Ruth–Aaron pairs

    • B. 

      Bulgarian numbers

    • C. 

      Monastery-church pairs

    • D. 

      Factor pairs

  • 2. 
    What is the birth name of the mathematician who named the puzzle? 
    • A. 

      Mike Keith

    • B. 

      Mikel Keith

    • C. 

      Micheal Keith

    • D. 

      Michael Keith

  • 3. 
    How many consecutive natural numbers are used in the puzzle?
    • A. 

      2

    • B. 

      4

    • C. 

      6

    • D. 

      8

  • 4. 
    The addition of a number's digit—in base 10—to the digits of its prime factorization gives rise to which of the following?
    • A. 

      The same sum

    • B. 

      A different value

    • C. 

      The number greater than 10

    • D. 

      The number less than 10

  • 5. 
    What is the total number of home runs attained by Mark McGwire and Sammy Sosa?
    • A. 

      59

    • B. 

      60

    • C. 

      61

    • D. 

      62

  • 6. 
    Are 61 and 62 a Maris–McGwire–Sosa pair?
    • A. 

      Yes

    • B. 

      No

    • C. 

      Yes, if and only if an integer is involved

    • D. 

      Yes, if and only if a negative number is involved

  • 7. 
    What is the formula used for representing the puzzle?
    • A. 

      (n, n + 1)

    • B. 

      (n, n - 1)

    • C. 

      2n

    • D. 

      (2n + 1)

  • 8. 
    Is it possible to have three consecutive integers in this puzzle? 
    • A. 

      Yes

    • B. 

      No

    • C. 

      Yes, if and only if we have one negative number

    • D. 

      Yes, if and only if we have at least one fraction

  • 9. 
    How is m(k) defined? 
    • A. 

      Zero

    • B. 

      Smallest integer

    • C. 

      Largest integer

    • D. 

      The middle number

  • 10. 
    What do we add to each number's digit? A/an...
    • A. 

      Whole number

    • B. 

      Integer

    • C. 

      Irrational number

    • D. 

      Prime number