Do You Know Polite Number?

10 Questions | Total Attempts: 112

SettingsSettingsSettings
Please wait...
Do You Know Polite Number?

Whenever you're talking about number theory, a polite number and what it entails will touched. For the latter, a polite number can be defined as a positive integer that you can write as a sum of two or more consecutive integers. With this definition, you should be able to solve some of the problems we've included as questions.


Questions and Answers
  • 1. 
    Which of these is not a positive number?
    • A. 

      12

    • B. 

      9

    • C. 

      -9

    • D. 

      8

  • 2. 
    Who out of the following didn't study the problems of polite numbers?
    • A. 

      Euler

    • B. 

      Enrique

    • C. 

      Mason

    • D. 

      Sylvester

  • 3. 
    Which of these isn't a polite number?
    • A. 

      12

    • B. 

      13

    • C. 

      11

    • D. 

      8

  • 4. 
    Which power, more often than not, are related to polite numbers?
    • A. 

      Four

    • B. 

      Two

    • C. 

      Ten

    • D. 

      Three

  • 5. 
    How many polite numbers are between 0 and 51?
    • A. 

      38 polite numbers

    • B. 

      28 polite numbers

    • C. 

      49 polite numbers

    • D. 

      44 polite numbers

  • 6. 
    What theorem explain impolite numbers?
    • A. 

      Lambek-Moser theorem

    • B. 

      Thomas-Henry theorem

    • C. 

      Pythagoras theorem

    • D. 

      David Euler Theorem

  • 7. 
    What is the politeness of 9?
    • A. 

      4

    • B. 

      1

    • C. 

      3

    • D. 

      2

  • 8. 
    What is the politeness of 15?
    • A. 

      3

    • B. 

      4

    • C. 

      2

    • D. 

      5

  • 9. 
    How many steps are involved in determining the politeness of a number?
    • A. 

      Three steps

    • B. 

      Four steps

    • C. 

      Five steps

    • D. 

      Six steps

  • 10. 
    Which of these is insignificant in the determining polite numbers?
    • A. 

      Staircase numbers

    • B. 

      Trapezoidal numbers

    • C. 

      Even numbers

    • D. 

      Young diagrams

Back to Top Back to top