Find Missing Sides with Sine, Cosine, & Tangent

  • 9th Grade
Reviewed by Editorial Team
The ProProfs editorial team is comprised of experienced subject matter experts. They've collectively created over 10,000 quizzes and lessons, serving over 100 million users. Our team includes in-house content moderators and subject matter experts, as well as a global network of rigorously trained contributors. All adhere to our comprehensive editorial guidelines, ensuring the delivery of high-quality content.
Learn about Our Editorial Process
| By Thames
T
Thames
Community Contributor
Quizzes Created: 7682 | Total Attempts: 9,547,133
| Attempts: 15 | Questions: 20 | Updated: Dec 11, 2025
Please wait...
Question 1 / 20
0 %
0/100
Score 0/100
1) Opposite = 7, hypotenuse = 25. Find the adjacent side.

Explanation

Use the Pythagorean theorem:

adjacent² = hypotenuse² − opposite²

So:

adjacent² = 25² − 7² = 625 − 49 = 576

Take the square root:

adjacent = √576 = 24

Hence, the adjacent side = 24.

Submit
Please wait...
About This Quiz
Find Missing Sides With Sine, Cosine, & Tangent - Quiz

Get ready to put trigonometry into action. In this quiz, you will use sine, cosine, and tangent to find unknown sides in right triangles. Each problem gives you one or more sides and an angle, and you’ll apply the correct trig ratio to calculate the missing length. This quiz strengthens... see moreyour understanding of how trignometric functions connect angles and side lengths, preparing you for real-world geometry and problem-solving in physics and design.
see less

2)
You may optionally provide this to label your report, leaderboard, or certificate.
2) Angle C = 37°, opposite = 9. Find the hypotenuse (nearest tenth).

Explanation

Use the sine ratio:

sin 37° = opposite / hypotenuse = 9 / H

Solve for H:

H = 9 / sin 37° ≈ 9 / 0.6018 ≈ 15.0

Hence, the hypotenuse ≈ 15.0.

Submit
3) Opposite = 8, θ = 40°. Find the hypotenuse (nearest tenth).

Explanation

Use the sine ratio:

hypotenuse = opposite / sin θ

So:

hypotenuse = 8 / sin 40° ≈ 8 / 0.6428 ≈ 12.4

Hence, hypotenuse ≈ 12.4.

Submit
4) Hypotenuse = 25, adjacent = 15. Find the opposite side.

Explanation

Use the Pythagorean theorem:

opposite² = 25² − 15² = 625 − 225 = 400

Take the square root:

opposite = √400 = 20

Hence, the opposite side = 20.

Submit
5) Sin α = 7/25. Find cos α.

Explanation

Use the identity:

cos α = √(1 − sin²α)

Substitute sin α = 7/25:

cos α = √(1 − (7/25)²)

= √(1 − 49/625)

= √(576/625)

= 24/25

Hence, cos α = 24/25.

Submit
6) In a right triangle, the ratio of rise to run is 4:10. Find the angle θ (nearest degree).

Explanation

The rise/run ratio gives:

tan θ = 4 / 10 = 0.4

Now find the angle:

θ = arctan(0.4) ≈ 21.8°

Rounded to the nearest degree:

θ ≈ 22°

Hence, θ ≈ 22°.

Submit
7) In a right triangle, angle A = 30°. If the hypotenuse is 12, find the side opposite A.

Explanation

Use the sine ratio:

opposite = hypotenuse × sin 30°

So, substitute the values:

opposite = 12 × sin 30°

sin 30° = 1/2

Thus:

opposite = 12 × (1/2) = 6

Hence, the opposite side = 6.

Submit
8) In a right triangle, angle B = 45° and adjacent side = 10. Find the hypotenuse.

Explanation

Use the cosine ratio:

cos 45° = adjacent / hypotenuse = 10 / H

Solve for H:

H = 10 / cos 45°

cos 45° = √2/2

So:

H = 10 / (√2/2) = 10√2

Hence, the hypotenuse = 10√2.

Submit
9) Angle θ = 60°, adjacent = 5. Find the hypotenuse.

Explanation

Use the cosine ratio:

cos 60° = adjacent / hypotenuse = 5 / H

Solve for H:

H = 5 / cos 60°

cos 60° = 0.5

So:

H = 5 / 0.5 = 10

Hence, the hypotenuse = 10.

Submit
10) A right triangle has hypotenuse 13 and one leg 5. Find the other leg.

Explanation

Use the Pythagorean theorem:

other² = hypotenuse² − leg²

So:

other² = 13² − 5² = 169 − 25 = 144

Take the square root:

other = √144 = 12

Hence, the other leg = 12.

Submit
11) Tan θ = 3/4, adjacent = 8. Find the opposite side.

Explanation

Use the tangent ratio:

tan θ = opposite / adjacent = 3/4

So, opposite = (3/4) × 8 = 6

Hence, the opposite side = 6.

Submit
12) Adjacent = 9, opposite = 12. Find sin θ.

Explanation

First find the hypotenuse:

hypotenuse = √(9² + 12²) = √(81 + 144) = √225 = 15

Then use the sine ratio:

sin θ = opposite / hypotenuse = 12 / 15 = 0.80

Hence, sin θ = 0.80.

Submit
13) Cos θ = 5/13. Find sin θ.

Explanation

Use the identity:

sin²θ + cos²θ = 1

So:

sin θ = √(1 − cos²θ)

= √(1 − (5/13)²)

= √(1 − 25/169)

= √(144/169) = 12/13

Hence, sin θ = 12/13.

Submit
14) Angle A = 53°, hypotenuse = 20. Find the adjacent side (nearest tenth).

Explanation

Use the cosine ratio:

adjacent = hypotenuse × cos 53°

Substitute values:

adjacent ≈ 20 × 0.6018 ≈ 12.0

Hence, the adjacent side ≈ 12.0.

Submit
15) Angle B = 65°, hypotenuse = 30. Find the adjacent side (nearest tenth).

Explanation

Use the cosine ratio:

adjacent = hypotenuse × cos 65°

Substitute values:

adjacent ≈ 30 × 0.4226 ≈ 12.7

Hence, adjacent ≈ 12.7.

Submit
16) Angle θ = 28°, adjacent = 14. Find the opposite side (nearest tenth).

Explanation

Use the tangent ratio:

opposite = adjacent × tan 28°

Compute:

opposite ≈ 14 × 0.5317 ≈ 7.4

Hence, opposite ≈ 7.4.

Submit
17) Hypotenuse = 10, angle = 45°. Find the opposite side (nearest tenth).

Explanation

Use the sine ratio:

opposite = hypotenuse × sin 45°

sin 45° = √2/2

Thus:

opposite = 10 × (√2/2) = 7.07 ≈ 7.1

Hence, opposite ≈ 7.1.

Submit
18) Tan β = 2/5, opposite = 8. Find the adjacent side.

Explanation

Use the tangent ratio:

tan β = opposite / adjacent = 2/5

Solve for adjacent:

adjacent = opposite × (5/2)

adjacent = 8 × 2.5 = 20

Hence, adjacent = 20.

Submit
19) Hypotenuse = 50, adjacent = 30. Find sin θ.

Explanation

Use the Pythagorean theorem:

opposite² = hypotenuse² − adjacent²

Compute:

opposite² = 50² − 30² = 2500 − 900 = 1600

opposite = √1600 = 40

Then:

sin θ = opposite / hypotenuse = 40 / 50 = 0.80

Hence, sin θ = 0.80.

Submit
20) Angle = 25°, adjacent = 100. Find opposite (nearest tenth).

Explanation

Use the tangent ratio:

opposite = adjacent × tan 25°

Compute:

opposite ≈ 100 × 0.4663 ≈ 46.6

Hence, opposite ≈ 46.6.

Submit
×
Saved
Thank you for your feedback!
View My Results
Cancel
  • All
    All (20)
  • Unanswered
    Unanswered ()
  • Answered
    Answered ()
Opposite = 7, hypotenuse = 25. Find the adjacent side.
Angle C = 37°, opposite = 9. Find the hypotenuse (nearest tenth).
Opposite = 8, θ = 40°. Find the hypotenuse (nearest tenth).
Hypotenuse = 25, adjacent = 15. Find the opposite side.
Sin α = 7/25. Find cos α.
In a right triangle, the ratio of rise to run is 4:10. Find the angle...
In a right triangle, angle A = 30°. If the hypotenuse is 12, find...
In a right triangle, angle B = 45° and adjacent side = 10. Find...
Angle θ = 60°, adjacent = 5. Find the hypotenuse.
A right triangle has hypotenuse 13 and one leg 5. Find the other leg.
Tan θ = 3/4, adjacent = 8. Find the opposite side.
Adjacent = 9, opposite = 12. Find sin θ.
Cos θ = 5/13. Find sin θ.
Angle A = 53°, hypotenuse = 20. Find the adjacent side (nearest...
Angle B = 65°, hypotenuse = 30. Find the adjacent side (nearest...
Angle θ = 28°, adjacent = 14. Find the opposite side...
Hypotenuse = 10, angle = 45°. Find the opposite side (nearest...
Tan β = 2/5, opposite = 8. Find the adjacent side.
Hypotenuse = 50, adjacent = 30. Find sin θ.
Angle = 25°, adjacent = 100. Find opposite (nearest tenth).
Alert!