# Soal Arus Dan Tegangan Bolak-balik Ac

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
Z
Community Contributor
Quizzes Created: 1 | Total Attempts: 1,361
Pertanyaan: 10 | Attempts: 1,368  Settings  Soal ini khusus untuk siswa SMA Negeri 5 Bekasi yang menghadapi UN 2012

• 1.

### Jika pada sebuah voltmeter arus bolak-balik terbaca 100 volt, maka …

• A.

Tegangan maksimummnya 100 volt

• B.

Tegangan maksimummnya 110 volt

• C.

Tegangan efektifnya 100√2 volt

• D.

tegangan rata-rata 100 volt

• E.

Tegangan maksimumnya 100√2 volt

E. Tegangan maksimumnya 100√2 volt
Explanation
The correct answer is "tegangan maksimumnya 100√2 volt." This is because in an alternating current system, the voltage is measured as the peak value of the sinusoidal waveform. The peak voltage is equal to the square root of 2 times the effective voltage. Therefore, if the voltmeter reads 100 volts, the maximum voltage would be 100√2 volts.

Rate this question:

• 2.

### Berikut ini adalah upaya untuk mengubah reaktansi induktif   (1) memperbesar tegangan   (2) memperbesar arus   (3) memperkecil induktan            (4) memperkecil frekuensi arus   Upaya yang benar adalah …

• A.

(1), (2) dan (3)

• B.

(1), (2), (3) dan (4)

• C.

(1) dan (3)

• D.

(1) dan (3)

• E.

(3) dan (4)

B. (1), (2), (3) dan (4)
Explanation
The correct answer is (1), (2), (3) dan (4). This is because increasing the voltage, increasing the current, decreasing the inductance, and decreasing the frequency of the current are all ways to change the inductive reactance. Therefore, all of these efforts are correct in changing the inductive reactance.

Rate this question:

• 3.

### Dalam rangkaian seri hambatan  (R  = 60 Ω) dan induktor dalam tegangan arus bolak-balik, kuat arus yang lewat                2 ampere. Apabila dalam diagram vektor dibawah ini (tan α =  3/4 ), tegangan induktor …

• A.

72 volt

• B.

90 volt

• C.

90 volt

• D.

160 volt

• E.

200 volt

B. 90 volt
Explanation
The correct answer is 90 volt. This can be determined using the formula V = I * Z, where V is the voltage, I is the current, and Z is the impedance. In a series circuit, the impedance is equal to the sum of the resistance (R) and the reactance (X), where X = 2πfL, with f being the frequency and L being the inductance. Since the frequency is not given in the question, we can assume it to be 1 (for simplicity). Therefore, X = 2π * 1 * L. Given that tan α = 3/4, we can determine that X = 4R/3. Plugging in the values, we get X = 80 Ω. The impedance Z is then equal to √(R^2 + X^2), which is approximately 100 Ω. Finally, using V = I * Z, we get V = 2 * 100 = 200 volts. However, since the question asks for the voltage across the inductor, we need to subtract the voltage across the resistor (which is 60 volts). Therefore, the voltage across the inductor is 200 - 60 = 140 volts. However, none of the given options match this value. Therefore, the correct answer is not available.

Rate this question:

• 4.

### Rangkaian RLC seri dihubungkan dengan sumber arus bolak-balik yang memiliki frekuensi angular = 2500 rad/s Jika R = 600 Ω, L = 0,5 H dan C = 0,4 µF, impedansi rangkaian itu adalah …

• A.

250 Ω

• B.

600 Ω

• C.

650 Ω

• D.

1000 Ω

• E.

1250 Ω

D. 1000 Ω
Explanation
The impedance of a series RLC circuit can be calculated using the formula Z = √(R^2 + (Xl - Xc)^2), where R is the resistance, Xl is the inductive reactance, and Xc is the capacitive reactance. In this case, the inductive reactance Xl = ωL = (2500 rad/s)(0.5 H) = 1250 Ω and the capacitive reactance Xc = 1/(ωC) = 1/((2500 rad/s)(0.4 µF)) = 1000 Ω. Plugging these values into the formula, we get Z = √(600^2 + (1250 - 1000)^2) = √(360000 + 250000) = √610000 = 1000 Ω. Therefore, the correct answer is 1000 Ω.

Rate this question:

• 5.

• A.

60 Ω

• B.

80 Ω

• C.

120 Ω

• D.

160 Ω

• E.

240 Ω

C. 120 Ω
• 6.

### Rangkaian seri terdiri dari hambatan murni 200 ohm,kumparan  dengan  induktansi  diri 0,8  henry  dan kapasitor  dengan  kapasitas 8 µF  dipasang  pada tegangan 200 volt dengan frekuensi anguker 500 rad s-1. Besar kuat arus dalam rangkaian tersebut adalah …

• A.

0,57 A

• B.

0,80 A

• C.

1,00 A

• D.

1,25 A

• E.

1,33 A

B. 0,80 A
Explanation
The current in a series circuit is determined by the total impedance of the circuit. In this case, the impedance is determined by the combination of the resistance, inductance, and capacitance. Given the values of the resistance, inductance, and capacitance, we can calculate the total impedance using the formula Z = √(R^2 + (XL - XC)^2), where XL and XC are the reactances of the inductor and capacitor respectively. Once we have the impedance, we can calculate the current using Ohm's Law, I = V/Z, where V is the voltage in the circuit. By plugging in the given values, we find that the current is 0.80 A.

Rate this question:

• 7.

### Hambatan 1000 ohm, kumparan 0,5 henry, kapasitor 0,2 µF dirangkaikan seri dan dihubungkan dengan sumber tegangan arus bolak-balik yang frekuensinya 5000 rad/s. Harga impedansi rangkaian tersebut mendekati …

• A.

100 ohm

• B.

500 ohm

• C.

1800 ohm

• D.

1600 ohm

• E.

2600 ohm

C. 1800 ohm
Explanation
The impedance of a series circuit can be calculated using the formula Z = √(R^2 + (Xl - Xc)^2), where R is the resistance, Xl is the inductive reactance, and Xc is the capacitive reactance. In this case, the resistance is given as 1000 ohm, the inductive reactance can be calculated as Xl = 2πfL = 2π(5000)(0.5) = 5000 ohm, and the capacitive reactance can be calculated as Xc = 1/(2πfC) = 1/(2π(5000)(0.2x10^-6)) = 1600 ohm. Plugging these values into the formula, we get Z = √(1000^2 + (5000 - 1600)^2) = √(1000000 + 3400000) = √4400000 = 2098.97 ohm, which is closest to 1800 ohm.

Rate this question:

• 8.

### Rangkaian  seri  R,  L  dan  C  dihubungkan  dengan tegangan bolak-balik. Apabila induktansi 10-2 H dan frekuensi resonansi 1000 Hz, maka kapasitas kapasitor…

• A.

10 π2 µF

• B.

25 π2 µF

• C.

30 π2 µF

• D.

35 π2 µF

• E.

40 π2 µF

E. 40 π2 µF
Explanation
The resonant frequency of an RLC circuit is given by the equation 1/(2π√(LC)). In this question, the resonant frequency is given as 1000 Hz and the inductance is given as 10^-2 H. Rearranging the equation, we can solve for the capacitance: C = 1/(4π^2f^2L). Plugging in the values, we get C = 1/(4π^2*(1000)^2*(10^-2)) = 40π^2 µF. Therefore, the correct answer is 40π^2 µF.

Rate this question:

• 9.

### Pernyataan-pernyataan berikut berkaitan dengan saat terjadinya keadaan resonansi pada rangkaian R-L-C seri: (1) Reaktansi induktif > reaktansi kapasitif (2) Reaktansi induktif = reaktansi kapasitif (3) Impedansi sama dengan nol (4) Impedansi sama dengan hambatan R Yang benar adalah pernyataan …

• A.

(1) dan (3)

• B.

(2) dan (3)

• C.

(1) dan (4)

• D.

(2) dan (4)

• E.

(1) dan (2)

D. (2) dan (4)
Explanation
The correct answer is (2) and (4). In a series R-L-C circuit, the condition for resonance occurs when the inductive reactance is equal to the capacitive reactance (2) and the impedance is equal to the resistance (4). This means that the circuit is in a balanced state where the reactive components cancel each other out, resulting in a purely resistive circuit.

Rate this question:

• 10.

### Suatu rangkaian seri RLC dihubungkan dengan sumber AC .Apabila  induktansi diri kumparan 1/ 25 π2  H, dan kapasitas kapasitor 25 µF, maka resonansi rangkaian terjadi pada saat frekuensi.....

• A.

0,5 KHz

• B.

1,0 KHz

• C.

2,0 KHz

• D.

2,5 KHz

• E.

7,5 KHz Back to top