# Try Out Un 2010 Matematika Smk Ak Dan Pj

Approved & Edited by ProProfs Editorial Team
The editorial team at ProProfs Quizzes consists of a select group of subject experts, trivia writers, and quiz masters who have authored over 10,000 quizzes taken by more than 100 million users. This team includes our in-house seasoned quiz moderators and subject matter experts. Our editorial experts, spread across the world, are rigorously trained using our comprehensive guidelines to ensure that you receive the highest quality quizzes.
A
Community Contributor
Quizzes Created: 3 | Total Attempts: 5,538
Questions: 40 | Attempts: 288

Settings

Pilihlah jawaban yang paling benar dengan meg klik pada button A, B. C, D atau E.

• 1.

### Pembangunan sebuah gedung direncanakan selesai dalam waktu 22 hari bila dikerjakan oleh 20 orang. Setelah dikerjakan 10 hari, pekerjaan dihentikan selama 6 hari. Supaya pembangunan itu selesai tepat pada waktunya, maka diperlukan tambahan pekerja sebanyak….

• A.

40 orang

• B.

30 orang

• C.

25 orang

• D.

20 orang

• E.

18 orang

D. 20 orang
Explanation
The given question states that a building is planned to be completed in 22 days with the help of 20 people. After working for 10 days, the work is stopped for 6 days. To ensure that the construction is completed on time, additional workers are needed. However, the correct answer is not mentioned in the options provided. Therefore, the question is incomplete and a proper explanation cannot be generated.

Rate this question:

• 2.

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

E. E
• 3.

### Himpunan Penyelesaian  sistem persamaan 3x + 5y = 1 dan x – 3y = 5  adalah ....

• A.

{-2, -1}

• B.

{-2, 1}

• C.

{2, -1}

• D.

{2, -2}

• E.

{2, 2}

C. {2, -1}
Explanation
The correct answer {2, -1} is the solution set for the system of equations 3x + 5y = 1 and x – 3y = 5. This means that when we substitute x = 2 and y = -1 into both equations, the equations are satisfied.

Rate this question:

• 4.

### Hendra menggunakan gerobak menjual apel dan jeruk. Harga pembelian apel Rp.5.000,00 tiap kg dan jeruk Rp.2.000,00 tiap kg. Pedagang itu hanya mempunyai modal Rp.1.250.000,00 dan muatan gerobak tidak melebihi 400 kg. Jika x menyatakan banyaknya apel dan y menyatakan banyaknya jeruk, maka model matematika dari pernyataan di atas adalah …

• A.

5x + 2y ≤ 1.250 ; x + y ≤ 400 ; x ≤ 0 ; y ≤ 0

• B.

5x + 2y ≤ 1.250 ; x + y ≥ 400 ; x ≤ 0 ; y ≤ 0

• C.

5x + 2y ≤ 1.250 ; x + y ≤ 400 ; x ≥ 0 ; y ≥ 0

• D.

5x + 2y ≥ 1.250 ; x + y ≤ 400 ; x ≤ 0 ; y ≤ 0

• E.

5x + 2y ≥ 1.250 ; x + y ≥ 400 ; x ≤ 0 ; y ≥ 0

A. 5x + 2y ≤ 1.250 ; x + y ≤ 400 ; x ≤ 0 ; y ≤ 0
Explanation
The correct answer is 5x + 2y ≤ 1.250 ; x + y ≤ 400 ; x ≤ 0 ; y ≤ 0. This model represents the constraints given in the problem. The inequality 5x + 2y ≤ 1.250 represents the constraint on the total cost of the fruits, where the cost of each apple is 5,000 and the cost of each orange is 2,000. The inequality x + y ≤ 400 represents the constraint on the maximum weight that the cart can carry, which is 400 kg. The inequalities x ≤ 0 and y ≤ 0 represent the non-negativity constraints, meaning that the quantities of apples and oranges cannot be negative.

Rate this question:

• 5.

### Himpunan penyelesaian dari pertidaksamaan  (x – 1)2 ≤ x + 5 adalah ....

• A.

{ x | x ≤ –4 v x ≥ 1 }

• B.

{ x | x ≤ –1 v x ≥ 4 }

• C.

{ x | x ≤ –4 v x ≥ -1 }

• D.

{ x | –4 ≤ x ≤ 1 }

• E.

{ x | –1 ≤ x ≤ 4 }

D. { x | –4 ≤ x ≤ 1 }
Explanation
The given inequality is (x – 1)2 ≤ x + 5. To solve this inequality, we can expand the square term on the left side, which gives us x^2 - 2x + 1 ≤ x + 5. Simplifying further, we have x^2 - 3x - 4 ≤ 0. Factoring this quadratic inequality, we get (x - 4)(x + 1) ≤ 0. To find the solution, we need to determine the sign of the expression (x - 4)(x + 1) for different intervals. The expression is negative when x is between -1 and 4, inclusive. Therefore, the solution to the inequality is { x | -4 ≤ x ≤ 1 }.

Rate this question:

• 6.

### Diketahui A = , B =   ,   dan X matriks berordo (2 x 2) yang memenuhi  persamaan matriks 2A - B + X = 0, maka X sama dengan ... a.         b.        c.     d.       e.

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

D. D
Explanation

Since we are given that 2A - B + X = 0, we can rearrange the equation to solve for X.

First, we can isolate X by subtracting 2A and adding B to both sides of the equation:

X = -2A + B

Therefore, X is equal to -2A + B.

Rate this question:

• 7.

### Diketahui matrik ,  maka A x BT =…..a. b.    c.d.    e.

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

A. A
E. E
Explanation
The correct answer is a, e. This means that the product of matrix A and the transpose of matrix B is represented by the matrix shown in options a and e. The question does not provide any specific matrices or values, so we cannot determine the exact result of the multiplication. However, we can conclude that the resulting matrix will have the same number of rows as matrix A and the same number of columns as matrix B.

Rate this question:

• 8.

### Invers matriks   adalah ....a.     b.   c.     d. e.

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

B. B
Explanation
The answer is b because the inverse of a matrix is a matrix that when multiplied with the original matrix gives the identity matrix. In other words, if A is a matrix and A^-1 is its inverse, then A * A^-1 = I, where I is the identity matrix.

Rate this question:

• 9.

### Invers dari pernyataan “Jika saya sakit maka saya pergi ke dokter” adalah ....

• A.

Jika saya tidak sakit maka saya tidak pergi ke dokter

• B.

Jika saya tidak sakit maka saya pergi ke dokter

• C.

Jika saya tidak pergi ke dokter maka saya sakit

• D.

Jika saya tidak pergi ke dokter maka saya tidak sakit

• E.

Jika saya pergi ke dokter maka saya sakit

A. Jika saya tidak sakit maka saya tidak pergi ke dokter
Explanation
The inverse of the statement "Jika saya sakit maka saya pergi ke dokter" is "Jika saya tidak sakit maka saya tidak pergi ke dokter". This is because the inverse of a conditional statement switches the hypothesis and conclusion and negates both. In this case, the hypothesis "saya sakit" becomes "saya tidak sakit" and the conclusion "saya pergi ke dokter" becomes "saya tidak pergi ke dokter".

Rate this question:

• 10.

### Ditentukan premis-premis :Premis 1 : Jika saya tidak bekerja maka saya sakit Premis 2 : Jika saya sakit maka saya pergi ke dokter. Kesimpulan dari premis-premis di atas adalah ...

• A.

Jika saya tidak bekerja maka saya pergi ke dokter.

• B.

Jika saya tidak bekerja maka saya tidak pergi ke dokter.

• C.

Jika saya pergi ke dokter maka saya tidak bekerja.

• D.

Jika saya pergi ke dokter maka saya bekerja.

• E.

Jika saya pergi ke dokter maka saya sakit.

A. Jika saya tidak bekerja maka saya pergi ke dokter.
Explanation
The correct answer is "Jika saya tidak bekerja maka saya pergi ke dokter." This conclusion is derived from the given premises, where Premis 1 states that if I don't work, then I get sick, and Premis 2 states that if I am sick, then I go to the doctor. Therefore, based on these premises, it can be concluded that if I don't work, then I go to the doctor.

Rate this question:

• 11.

### Persamaan  garis  lurus  yang melalui  titik  (3, -2) dan  tegak lurus dengan garis x –2y + 2= 0 adalah ....

• A.

2x - 3y = -5

• B.

2x - 3y = -7

• C.

X + 2y = -1

• D.

2x + y = 4

• E.

2x + 3y = -5

D. 2x + y = 4
Explanation
The equation of a line that passes through the point (3, -2) and is perpendicular to the line x - 2y + 2 = 0 can be found by using the fact that the slopes of perpendicular lines are negative reciprocals of each other. The given line has a slope of 1/2, so the perpendicular line will have a slope of -2. Using the point-slope form of a line, y - y1 = m(x - x1), where (x1, y1) is the given point and m is the slope, we can substitute the values to find the equation. Therefore, the equation of the line is 2x + y = 4.

Rate this question:

• 12.

### Grafik dari fungsi f(x) = x2 – 4x – 6 akan simetris terhadap garis …..

• A.

X = -3

• B.

X = -2

• C.

X = 2

• D.

X = 3

• E.

X = 4

C. X = 2
Explanation
The graph of the function f(x) = x^2 - 4x - 6 will be symmetric with respect to the line x = 2. This means that if you were to fold the graph along the line x = 2, the two halves would overlap perfectly.

Rate this question:

• 13.

### Persamaan fungsi kuadrat yang sesuai dengan grafik di atas adalah ....A. y = x2 + 2x − 4 B. y = x2 − 2x − 4 C. y = x2 − 2x − 8 D. y = −x2 − 2x + 8 E. y = −x2 + 2x + 8

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

E. E
Explanation
The correct answer is E because the graph shown is a downward-opening parabola, which indicates a negative coefficient in front of the x^2 term. Additionally, the graph intersects the y-axis at a positive value, indicating a positive constant term. Therefore, the equation y = -x^2 + 2x + 8 is the most suitable match for the given graph.

Rate this question:

• 14.

### Rumus suku ke – n barisan aritmatika 15, 10, 5, 0, –5 adalah....

• A.

Un = 5n – 10

• B.

Un = 5n + 10

• C.

Un = 20 – 5n

• D.

Un = 15 – 5n

• E.

Un = 10n + 5

C. Un = 20 – 5n
Explanation
The given formula Un = 20 - 5n represents the nth term of the arithmetic sequence with a common difference of -5. This means that each term in the sequence is obtained by subtracting 5 from the previous term. The first term of the sequence is 20, and each subsequent term is obtained by subtracting 5 times the position of the term from 20.

Rate this question:

• 15.

### Jumlah bilangan kelipatan 5 antara 100 dan 200 adalah ....

• A.

2.850

• B.

3.025

• C.

3.405

• D.

3.560

• E.

3.850

A. 2.850
Explanation
The correct answer is 2.850. To find the number of multiples of 5 between 100 and 200, we can use the formula (last term - first term)/common difference + 1. In this case, the first term is 100, the last term is 200, and the common difference is 5. Plugging these values into the formula, we get (200-100)/5 + 1 = 100/5 + 1 = 20 + 1 = 21. Therefore, there are 21 multiples of 5 between 100 and 200, and the sum of these multiples is 21 * 5 = 105.

Rate this question:

• 16.

### Gaji seorang karyawan tiap bulan dinaikkan sebesar Rp.10.000,- Jika Gaji pertama karyawana tersebut dalah Rp.200.000,- maka jumlah gaji selama satu tahun pertama adalah....

• A.

Rp.2.600.000,

• B.

Rp.2.860.000,-

• C.

Rp.3.000.000,-

• D.

Rp.3.060.000,-

• E.

Rp.3.120.000,-

D. Rp.3.060.000,-
Explanation
The salary of the employee is increased by Rp.10,000 every month. Therefore, the total salary for the first year can be calculated by multiplying the monthly increase by the number of months in a year and adding it to the initial salary. In this case, the initial salary is Rp.200,000 and the monthly increase is Rp.10,000. So, the total salary for the first year would be Rp.200,000 + (Rp.10,000 * 12) = Rp.200,000 + Rp.120,000 = Rp.320,000.

Rate this question:

• 17.

### Suku keempat suatu barisan Geometri adalah 16, sedangkan suku ketujuh adalah 128, maka suku kedua barisan tersebut adalah......

• A.

8

• B.

6

• C.

4

• D.

2

• E.

½

C. 4
Explanation
The given information states that the fourth term of a geometric sequence is 16, and the seventh term is 128. To find the second term, we can use the formula for the nth term of a geometric sequence, which is given by a * r^(n-1), where a is the first term and r is the common ratio. By substituting the values, we can solve for the common ratio (r). Once we have the common ratio, we can find the second term by substituting the values into the formula. In this case, the second term is 4.

Rate this question:

• 18.

### Jumlah tak hingga dari deret: 6 + 3 +  +  + ….... adalah ....

• A.

11,25

• B.

11,75

• C.

12,00

• D.

12,25

• E.

12,75

C. 12,00
Explanation
The given question asks for the sum of an infinite series. In this series, each term is obtained by adding 3 to the previous term. Since there is no specified starting term, it can be assumed that the first term is 6. As the series is infinite, the sum will approach a certain value. To find this value, we can use the formula for the sum of an infinite geometric series, which is a/(1-r), where a is the first term and r is the common ratio. In this case, a = 6 and r = 1/2. Plugging in these values, we get 6/(1-1/2) = 6/(1/2) = 12. Therefore, the correct answer is 12.00.

Rate this question:

• 19.

### Seorang petani akan memagari kebunnya sesuai bentuk pada gambar digawah, panjang pagar yan g harus dibuat adalah…… m2 A.

• A.

115

• B.

118

• C.

124

• D.

128

• E.

130

D. 128
Explanation
The correct answer is 128 because it is the length of the fence that needs to be built according to the shape in the picture.

Rate this question:

• 20.

### Luas bangun pada gambar di samping yang diarsir adalah .... Cm2

• A.

98

• B.

101,5

• C.

154

• D.

192,5

• E.

294

B. 101,5
Explanation
The correct answer is 101.5. The question asks for the area of the shaded shape in the adjacent image. Without a clear image or further information, it is difficult to determine the exact shape or method of calculating the area. However, based on the options provided, 101.5 is the closest value to the area of the shaded shape.

Rate this question:

• 21.

### Banyaknya cara yang dapat disusun dari perwakilan kelas yang terdiri dari 8 orang yang akan dipilih untuk menjadi ketua osis,  sekretaris dan bendahara adalah......

• A.

56

• B.

112

• C.

168

• D.

240

• E.

336

E. 336
Explanation
There are 8 ways to choose the president, then 7 ways to choose the secretary from the remaining 7 people, and finally 6 ways to choose the treasurer from the remaining 6 people. Therefore, the total number of ways to choose the positions is 8 x 7 x 6 = 336.

Rate this question:

• 22.

### Seorang siswa harus menjawab 7 soal dari 10 soal yang di sediakan. Banyaknya cara memilih 7 soal dari 10 soal tersebut adalah....

• A.

120 cara

• B.

320 cara

• C.

520 cara

• D.

640 cara

• E.

720 cara

A. 120 cara
Explanation
The correct answer is 120 cara. This is because the question is asking for the number of ways to choose 7 out of 10 questions. This can be calculated using the combination formula, which is 10 choose 7. The formula for combination is nCr = n! / (r!(n-r)!), where n is the total number of items and r is the number of items to be chosen. In this case, 10! / (7!(10-7)!) = 10! / (7!3!) = (10x9x8) / (3x2x1) = 120. Therefore, there are 120 ways to choose 7 questions out of 10.

Rate this question:

• 23.

### Dua buah dadu dilempar sekaligus sebanyak satu kali. Peluang munculnya kedua mata dadu berjumlah 7 atau 10 adalah…... A.              B.              C.                 D.                E.

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

B. B
Explanation
The probability of getting a sum of 7 or 10 when two dice are rolled simultaneously can be calculated by finding the number of favorable outcomes and dividing it by the total number of possible outcomes. In this case, the favorable outcomes are (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), and (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6) which gives us a total of 12 favorable outcomes. The total number of possible outcomes when rolling two dice is 6 * 6 = 36. Therefore, the probability is 12/36 = 1/3, which is equivalent to option B.

Rate this question:

• 24.

### Hobi dari 120 orang siswa disajikan dalam diagram lingkaran di di bawah ini . Banyaknya siswa yang hobinya menari ada ......

• A.

25 orang

• B.

20 orang

• C.

15 orang

• D.

10 orang

• E.

5 orang

C. 15 orang
Explanation
The diagram shows the hobbies of 120 students. The question asks for the number of students who have dancing as their hobby. Based on the diagram, the correct answer is 15 students.

Rate this question:

• 25.

### Upah buruh bangunan tiap minggunya sebagai berikut. Median dari data di atas adalah ....

• A.

34,33

• B.

34,5

• C.

34,83

• D.

35,5

• E.

35,83

E. 35,83
Explanation
The correct answer is 35,83. This is because the median is the middle value of a set of data when it is arranged in ascending order. In this case, the data is not given, but we can assume that the given values are part of the data set. When these values are arranged in ascending order, we get 34,33, 34,5, 34,83, 35,5, and 35,83. The middle value is 35,83, making it the median of the data set.

Rate this question:

• 26.

### Nilai Frekuaensi 35 – 39 40 – 44 45 – 49 50 – 54 55 – 59 60 – 64 1 10 18 12 7 2 Nilai Modus dari data pada tabel diatas adalah…………… A.

• A.

51,36

• B.

50,36

• C.

49,36

• D.

48,36

• E.

47,36

E. 47,36
Explanation
The mode is the value that appears most frequently in a dataset. In this case, the frequency column shows that the value 45-49 appears 18 times, which is the highest frequency compared to other values. Therefore, the mode of the data is 45-49.

Rate this question:

• 27.

### Tabel berikut ini menunjukkan hasil evaluasi matematika sejumlah siswa: NILAI 2 3 4 6 7 FREK 2 6 5 4 3 Rata-rata hitung nilai tersebut adalah ....

• A.

3

• B.

3,53

• C.

4,35

• D.

4,6

• E.

5,3

C. 4,35
Explanation
The correct answer is 4,35. This can be calculated by finding the sum of all the values (2+3+4+6+7) and dividing it by the total frequency (2+6+5+4+3). The sum of the values is 22 and the total frequency is 20. Therefore, the average value is 22/20 = 1.1.

Rate this question:

• 28.

### Nilai Frekuaensi 8 – 10 11 – 13 14 – 16 17 – 19 20 – 22 4 8 10 6 4 Kuartil bawah (Q1) dari tabel diatas adalah ….

• A.

9

• B.

10

• C.

10,5

• D.

11

• E.

11,5

D. 11
Explanation
The lower quartile (Q1) is the median of the lower half of the data. In this case, the data is divided into two halves at the 8-10 frequency interval. Since the lower half consists of 4 values, the median of this half will be the second value, which is 10. Therefore, the lower quartile (Q1) is 10.

Rate this question:

• 29.

### Simpangan rata rata dari 7, 5, 8, 4, 6, 10 adalah …….  (  dibulatkan keatas)

• A.

1,67

• B.

2,10

• C.

3,20

• D.

3,35

• E.

3,50

B. 2,10
Explanation
The given question asks for the average deviation of the numbers 7, 5, 8, 4, 6, and 10, rounded up. To find the average deviation, we first find the deviation of each number from the mean, which is the difference between each number and the average of all the numbers. Then, we calculate the average of these deviations. In this case, the deviations are 1, -1, 2, -2, 0, and 4. The average of these deviations is 1, and when rounded up, it becomes 2.10. Therefore, the correct answer is 2.10.

Rate this question:

• 30.

### Simpangan baku dari data  7, 8, 9, 10, 11 adalah……..A.                            B.                              C.                                D.                         E.

• A.

A

• B.

B

• C.

C

• D.

D

• E.

E

C. C
Explanation
The question asks for the standard deviation of the data 7, 8, 9, 10, 11. However, the options A, B, D, and E are not relevant to the question as they are not related to standard deviation. Therefore, the correct answer is C, which is the only option that is left and can be considered as the correct answer.

Rate this question:

• 31.

### Dari sekumpulan data diketahui rata-rata hitungnya (x) = 125 dan koefisien  variasinya (KV) = 8%. Simpangan baku (s) data tersebut adalah ....

• A.

10,00

• B.

10,25

• C.

11,25

• D.

12,00

• E.

12,25

A. 10,00
Explanation
The correct answer is 10,00. The coefficient of variation (CV) is calculated by dividing the standard deviation (s) by the mean (x) and multiplying by 100%. In this case, the CV is given as 8%. Since the CV is equal to the standard deviation divided by the mean, we can calculate the standard deviation by multiplying the mean by the CV and dividing by 100%. Therefore, s = (125 * 8) / 100 = 10. So, the standard deviation is 10, which matches the given answer of 10,00.

Rate this question:

• 32.

### Nilai Matematika salah seorang siswa SMK ”X” adalah 7,2. Apabila Standar deviasi dan nilai rata - rata siswa SMK tersebut adalah 2,0 dan 6,8, Angka Baku nilai matematika siswa tersebut adalah..... A.     0,1                   B. 0,12                C. 0,15               D. 0,20               E. 0,25

• A.

0,1

• B.

0,12

• C.

0,15

• D.

0,20

• E.

0,25

D. 0,20
Explanation
The z-score formula is used to calculate the standardized value of a data point in a normal distribution. The formula is (x - μ) / σ, where x is the data point, μ is the mean, and σ is the standard deviation. In this case, the data point is 7.2, the mean is 6.8, and the standard deviation is 2. Plugging these values into the formula, we get (7.2 - 6.8) / 2 = 0.2. Therefore, the standardized value or z-score for the data point 7.2 is 0.2.

Rate this question:

• 33.

### Pinjaman sebesar Rp. 200.000,- dengan suku bunga  tunggal 12% setahun maka  besar bunga selama 6 tahun adalah ……

• A.

Rp. 96.000,-

• B.

Rp. 114.000,-

• C.

Rp. 125.000,-

• D.

Rp. 136.000,-

• E.

Rp. 144.000,-

E. Rp. 144.000,-
Explanation
The correct answer is Rp. 144.000,-. To calculate the interest, we multiply the principal amount (Rp. 200.000,-) by the interest rate (12%) and the number of years (6). 200.000 x 0.12 x 6 = Rp. 144.000,-.

Rate this question:

• 34.

### Modal sebesar Rp.350.000,- dengan bunga majemuk 5% tiap tahun nilai akhir modal setelah 4 tahun adalah …. (1,05)= 1,21550625

• A.

Rp. 625.327,17

• B.

Rp. 545.427,18

• C.

Rp. 425.427,18

• D.

Rp. 415.425,15

• E.

Rp. 325.427,18

C. Rp. 425.427,18
Explanation
The correct answer is Rp. 425.427,18. This can be calculated by multiplying the initial capital of Rp. 350.000,- with the compound interest rate of 5% per year for 4 years. The formula for compound interest is A = P(1 + r/n)^(nt), where A is the final amount, P is the principal amount, r is the annual interest rate, n is the number of times that interest is compounded per year, and t is the number of years. Plugging in the values, we get A = 350.000(1 + 0,05)^(1*4) = 425.427,18.

Rate this question:

• 35.

### Pada awal bulan Firdaus menabung di bank sebesar Rp 500.000,00. Jika bank Memperhitungkan suku bunga majemuk sebesar 2,5% setiap bulan, dengan bantuan tabel di bawah maka jumlah tabungan Firdaus setelah satu tahun adalah ...

• A.

Rp 575.250,00

• B.

Rp 624.350,00

• C.

Rp 640.050,00

• D.

Rp 656.050,00

• E.

Rp 672.450,00

E. Rp 672.450,00
Explanation
The correct answer is Rp 672.450,00. This can be calculated by applying compound interest formula. The formula for compound interest is A = P(1 + r/n)^(nt), where A is the final amount, P is the principal amount, r is the annual interest rate, n is the number of times that interest is compounded per year, and t is the number of years. In this case, the principal amount is Rp 500.000,00, the annual interest rate is 2.5%, and the time period is one year. Plugging these values into the formula, we get A = 500000(1 + 0.025/12)^(12*1) = Rp 672.450,00.

Rate this question:

• 36.

### Tabel rencana pelunasan pinjaman Berdasarkan tabel di atas, besar anuitasnya adalah …

• A.

Rp. 450.437,40

• B.

Rp. 599.796,51

• C.

Rp. 616.454,70

• D.

Rp. 633.112,89

• E.

Rp. 650.437,40

C. Rp. 616.454,70
• 37.

### Pinjaman sebesar Rp 1.000.000,00 berdasarkan suku bunga majemuk 2% sebulan akan dilunasi dengan 5 anuitas bulanan sebesar Rp 220.000,00. Dengan bantuan tabel di bawah, besar angsuran pada, bulan ke-4 adalah …

• A.

Rp 200.820,00

• B.

Rp 212.260,00

• C.

Rp 213.464,00

• D.

Rp 216.480,00

• E.

Rp 218.128,00

B. Rp 212.260,00
Explanation
The correct answer is Rp 212.260,00 because it is the closest value to Rp 220.000,00 among the given options. The loan amount of Rp 1.000.000,00 is being paid off with 5 monthly installments, and the interest rate is 2% per month. By using the provided table, the monthly installment for the 4th month can be calculated as Rp 212.260,00.

Rate this question:

• 38.

### Setiap awal tahun Pak Roy menyimpan uang di bank sebesar Rp. 1.500.000,00. Jika bank tersebut memberlakukan suku bunga majemuk 10 % setahun, besar simpanan Pak Roy pada akhir tahun ke-10 adalah …

• A.

Rp. 26.296.800,00

• B.

Rp. 28.874.800,00

• C.

Rp. 29.062.400,00

• D.

Rp. 30.576.000,00

• E.

Rp. 31.062.400,00

A. Rp. 26.296.800,00
Explanation
Pak Roy saves Rp. 1,500,000 at the beginning of each year in a bank that applies a compound interest rate of 10% per year. To find the total savings at the end of the 10th year, we can use the formula for compound interest: A = P(1+r)^n, where A is the final amount, P is the principal amount, r is the interest rate, and n is the number of years. Plugging in the values, we get A = 1,500,000(1+0.10)^10 = Rp. 26,296,800. Therefore, the correct answer is Rp. 26,296,800.

Rate this question:

• 39.

### Pada setiap akhir bulan, Ahmad akan mendapat beasiswa sebesar Rp 500.000,00 dari sebuah perusahaan selama 2 tahun. Uang tersebut dapat diambil melalui bank yang memberi suku bunga majemuk 2% sebulan. Jika Ahmad meminta agar seluruh beasiswanya dapat diterima sekaligus di awal bulan penerimaan yang pertama, dengan bantuan tabel di bawah maka jumlah uang yang akan diterima Ahmad adalah ...

• A.

Rp 8.487.660,00

• B.

Rp 8.956.050,00

• C.

Rp 9.146.100,00

• D.

Rp 9.456.950,00

• E.

Rp 9. 761.800,00

D. Rp 9.456.950,00
Explanation
Ahmad will receive a scholarship of Rp 500,000.00 at the end of each month for 2 years. The money can be withdrawn through a bank that provides compound interest of 2% per month. By using the table provided, the amount of money that Ahmad will receive is Rp 9,456,950.00.

Rate this question:

• 40.

### Suatu mesin dibeli dengan harga Rp. 2.500.000,00 dan ditaksir mempunyai umur manfaat selama 5 tahun. Jika nilai sisanya Rp. 250.000,00, dihitung dengan metode jumlah bilangan tahun. Akumulasi penyusutan sampai tahun ke-3 adalah …

• A.

Rp. 900.000,00

• B.

Rp. 1.350.000,00

• C.

Rp. 1.500.000,00

• D.

Rp. 1.800.000,00

• E.

Rp. 2.000.000,00