SAT Just Test

25 Questions

Settings
SAT Math Quizzes & Trivia

This is quiz comprising of a set of 25 SAT Math Questions. They reflect the problems found on the SAT Math section. These practice questions have a special focus on algebraic manipulation and counting principles. For more Free SAT Math Questions visit: http://www. Proprofs. Com/sat/practice-questions. Shtml


Questions and Answers
  • 1. 
    If A $ B = A * B - ( A + B), what is 3 $ (2 $ 1)?
    • A. 

      -5

    • B. 

      -3

    • C. 

      0

    • D. 

      1

    • E. 

      4

  • 2. 
    How many numbers less than 1000 are divisble by 3?
    • A. 

      300

    • B. 

      310

    • C. 

      311

    • D. 

      333

    • E. 

      500

  • 3. 
    If a^b = c^d, which of the following is not necessarily true?
    • A. 

      A^b - c^d = 0

    • B. 

      A^b + c^d = 2 * (a^b)

    • C. 

      (a^b)/(c^d) = 1

    • D. 

      A = c

    • E. 

      A^b * c^d = a^(2*b)

  • 4. 
    Which of the following lines does not intersect y = 5 x + 2?
    • A. 

      -5x + 2y = 4

    • B. 

      -2x + 5y = -3

    • C. 

      10x - y = 1

    • D. 

      3x + y = 17

    • E. 

      5x - y = -29

  • 5. 
    A regular polygon has 9 sides. What is the degree measure of the angle, within the polygon, between any two sides?
    • A. 

      60

    • B. 

      90

    • C. 

      120

    • D. 

      140

    • E. 

      165

  • 6. 
    A cubic box, X, has sides of length n. Another cubic box, Y, has sides of length 2n. How many boxes X could fit into a single box Y?
    • A. 

      2

    • B. 

      4

    • C. 

      8

    • D. 

      16

    • E. 

      32

  • 7. 
    A number is called "round" if it contains at least one zero as a digit. How many three-digit numbers are "round?"
    • A. 

      153

    • B. 

      171

    • C. 

      178

    • D. 

      179

    • E. 

      215

  • 8. 
    How many ways can Pete, Mary, Sue, and Joe stand in a line if Joe and Sue cannot stand next to each other?
    • A. 

      4

    • B. 

      6

    • C. 

      12

    • D. 

      16

    • E. 

      18

  • 9. 
    A square, X, has sides of length n. Another square, Y, has sides of length 1.5n. How many X can fit into a single Y?
    • A. 

      1

    • B. 

      1.5

    • C. 

      2

    • D. 

      2.25

    • E. 

      4

  • 10. 
    A triangle has sides of length 7, 11, and X. Which of the following cannot be X?
    • A. 

      2

    • B. 

      4

    • C. 

      8

    • D. 

      12

    • E. 

      18

  • 11. 
    If |a| < |b|, and a > b, which of the following is necessarily true?
    • A. 

      |a + b| > |b| + |a|

    • B. 

      |a + b| < a - b

    • C. 

      |a| + |b| > 2|b|

    • D. 

      |a - b| > a + b

    • E. 

      |a| - |b| > |a - b|

  • 12. 
    Six children sit at a circular table. In how many orders can they sit at the table?
    • A. 

      6

    • B. 

      18

    • C. 

      64

    • D. 

      118

    • E. 

      120

  • 13. 
    If a two-sided coin is flipped three times, what is the probability that at least one head will show up?
    • A. 

      1/8

    • B. 

      3/8

    • C. 

      1/2

    • D. 

      2/3

    • E. 

      7/8

  • 14. 
    If m & n = (m + n)^(m - n), what is 2 & (2 & 2)?
    • A. 

      2

    • B. 

      3

    • C. 

      4

    • D. 

      6

    • E. 

      8

  • 15. 
    Which of the following cannot be formed from any combination of two pennies, three nickles, one dime, and two quarters?
    • A. 

      $0.03

    • B. 

      $0.54

    • C. 

      $0.56

    • D. 

      $0.75

    • E. 

      $0.78

  • 16. 
    A three-digit number is called "big" if any two of its digits are equal. How many three-digit numbers are "big?"
    • A. 

      112

    • B. 

      146

    • C. 

      214

    • D. 

      252

    • E. 

      316

  • 17. 
    If 2 ^ (4x + 3) = 4 ^ (x - 1), what is x?
    • A. 

      -3

    • B. 

      -5/2

    • C. 

      -1

    • D. 

      2

    • E. 

      4/3

  • 18. 
    Which of the following values of x is not in the domain of the function y = x / (x^2-2x+1)
    • A. 

      -3

    • B. 

      -2

    • C. 

      -1

    • D. 

      0

    • E. 

      1

  • 19. 
    If a + b = y, what is a^2 + 2ab + b^2?
    • A. 

      Y

    • B. 

      2y

    • C. 

      Y^2

    • D. 

      2y^2

    • E. 

      4y^2

  • 20. 
    The number 100 has two trailing zeros. How many trailing zeros does 100! have?
    • A. 

      12

    • B. 

      15

    • C. 

      18

    • D. 

      24

    • E. 

      28

  • 21. 
    Which of the following statements is always true?
    • A. 

      |(a+b)^2| < |a^2| + |b^2|

    • B. 

      |a^2 + b^2| > (a+b)^2

    • C. 

      |a^2 + b^2| >= |a+b|^2

    • D. 

      |a^2 + b^2 - 1|

    • E. 

      |a + b^2| > |a^2 - b|

  • 22. 
    In physics, force = mass * acceleration. Suppose you have an original force F and new force G in which the mass is increased by a factor of two and the acceleration is increased by a factor of four. What is the ratio of G:F?
    • A. 

      1:8

    • B. 

      1:4

    • C. 

      1:1

    • D. 

      4:1

    • E. 

      8:1

  • 23. 
    If a^2 = b^2, which of the following is/are always true? I. a = b II. |a| = |b| III. |a - b| = 0
    • A. 

      I only

    • B. 

      II only

    • C. 

      I and II

    • D. 

      I and III

    • E. 

      I, II, and III

  • 24. 
    If two lines have a slopes of -4 and 1/4, which of the following is true about the two lines?
    • A. 

      They do not intersect

    • B. 

      They intersect at two points

    • C. 

      They are parallel

    • D. 

      The angle formed between their intersection is 90 degrees in measure

    • E. 

      They are the same line

  • 25. 
    If (a-b)^2 = (a+b)^2, what is the value of ab?
    • A. 

      -4

    • B. 

      -2

    • C. 

      0

    • D. 

      2

    • E. 

      4