Pvhs Algebra 1 Final

28 Questions | Total Attempts: 20

SettingsSettingsSettings
Please wait...
Algebra Quizzes & Trivia

This test will contain information from the PVHS Algebra 1 coursework, from sections 7-12


Questions and Answers
  • 1. 
    Factoring: X^2 Trinomials: x2=x^2 Factor x^2 + 11x + 28
    • A. 

      (x + 7) (x + 4)

    • B. 

      (x - 8) (x + 6)

    • C. 

      (x + 1) (x - 3)

    • D. 

      (x + 5) (x - 2)

  • 2. 
    Factoring: X^2 Trinomials: x2=x^2 Factorx^2 - 5x + 4
    • A. 

      (x - 8) (x - 7)

    • B. 

      (x - 4) (x - 1)

    • C. 

      (x - 4) (x + 2)

    • D. 

      (x + 11) (x + 2)

  • 3. 
    Factoring: aX^2 Trinomials (Level 1 - Two Primes) x2=x^2 Factor11x^2 + 8x – 3
    • A. 

      (x - 1)(7x - 5)

    • B. 

      (5x + 7)(x - 1)

    • C. 

      (11x - 3)(x + 1)

    • D. 

      (5x + 3)(x + 1)

  • 4. 
    Factoring: aX^2 Trinomials (Level 1 - Two Primes) x2=x^2 Factor7x^2 - 15x + 2
    • A. 

      (x + 5)(3x + 1)

    • B. 

      (11x + 3)(x + 1)

    • C. 

      (7x - 1)(x - 13)

    • D. 

      (7x - 1)(x - 2)

  • 5. 
    Factoring: aX^2 Trinomials (Level 2 - One Prime) x2=x^2 Factor4x^2 + 9x + 5
    • A. 

      (4x + 5)(x + 1)

    • B. 

      (x + 13)(5x + 1)

    • C. 

      (x + 3)(11x + 3)

    • D. 

      (9x + 7)(x + 1)

  • 6. 
    Factoring: aX^2 Trinomials (Level 2 - One Prime) x2=x^2 Factor45x^2 + 122x + 13
    • A. 

      (8x + 1)(3x + 13)

    • B. 

      (9x + 1)(5x + 13)

    • C. 

      (7x - 1)(x + 4)

    • D. 

      (11x + 6)(x + 5)

  • 7. 
    Factoring: Difference of Two Squares x2=x^2 Factor16x^2 – 81
    • A. 

      (x + 8)(x - 8)

    • B. 

      (6x + 5)(6x - 5)

    • C. 

      (4x + 9)(4x - 9)

    • D. 

      (4x + 9)(4x - 9)

  • 8. 
    Factoring: The Sum & Difference of Two Cubes x2=x^2 Factorx^3 + 8
    • A. 

      ( x + 2 ) ( x^2 - 2x + 4 )

    • B. 

      ( x + 5 ) ( x^2 - 5x + 25 )

    • C. 

      ( 1 + y ) ( 1 - y + y^2 )

    • D. 

      ( 3x - 5y ) ( 9x^2 + 15xy + 25y^2 )

  • 9. 
    Factoring: The Sum & Difference of Two Cubes x2=x^2 Factor8x^3 - 27y^3
    • A. 

      ( x - 5 ) ( x^2 + 5x + 25 )

    • B. 

      ( 2x - 3y ) ( 4x^2 + 6xy + 9y^2 )

    • C. 

      ( 2 - y ) ( 4 + 2y + y^2 )

    • D. 

      ( 4 - 5y ) ( 16 + 20y + 25y^2 )

  • 10. 
    Factoring: Factor by Grouping x2=x^2 Factor3ab - 9ax + 4b - 12x
    • A. 

      ( y - a )( x + b )

    • B. 

      ( x + 9 )( 6y - 5 )

    • C. 

      ( 3a + 4 )( b - 3x )

    • D. 

      ( a + 1 )( b + 3x )

  • 11. 
    Factoring: Factor by Grouping x2=x^2 Factorxy - 5x + y – 5
    • A. 

      ( a - 1 )( 5b + 4x )

    • B. 

      ( 10a - 3 )( 4b + x )

    • C. 

      ( 2x - 3 )( y + 1 )

    • D. 

      ( x + 1 )( y - 5 )

  • 12. 
    Solving Quadratics: By Factoringx2=x^2 solve for x- 2x^2 - 3x + 20 = 0
    • A. 

      X = -4 or x = 5/2

    • B. 

      X = -1 or x = -5/3

    • C. 

      X = 1/3 or x = 2

    • D. 

      X = -3/4 or x = 1

  • 13. 
    Solving Quadratics: By Factoringx2=x^2 solve for x- 3x^2 - 16x - 16 = 0
    • A. 

      X = -1/2 or x = 3/2

    • B. 

      X = -4 or x = -4/3

    • C. 

      X = -1 or x = ½

    • D. 

      X = -5/4 or x = 1

  • 14. 
    Solving Quadratics: By Factoring 2 x2=x^2 solve for x- 20x^2 - 19x - 3 = 0
    • A. 

      X = -3/2 or x = 9

    • B. 

      X = -1 or x = -1

    • C. 

      X = -1/5 or x = -3/4

    • D. 

      X = -4/7 or x = -3/5

  • 15. 
    Solving Quadratics: By Factoring 2 x2=x^2 solve for x- 5x^2 - 42x - 16 = 0
    • A. 

      X = 1/9 or x = 2

    • B. 

      X = -5/9 or x = -2/7

    • C. 

      X = -9/8 or x = 8/7

    • D. 

      X = -8 or x = -2/5

  • 16. 
    Completing the Square 1 Complete the square to get this thing in the form: f(x) = (x-h)2+kf (x) = x^2  + 18x  + 86
    • A. 

      F (x) = ( x + 9 )^2 + 5

    • B. 

      F (x) = ( x + 7 )^2 + 6

    • C. 

      F (x) = ( x - 3 )^2 + 5

    • D. 

      F (x) = ( x + 4 )^2 + 4

  • 17. 
    Completing the Square 1 Complete the square to get this thing in the form: f(x) = (x-h)2+kf (x) = x^2  + 18x  + 86
    • A. 

      F (x) = ( x - 1 )^2 + 10

    • B. 

      F (x) = ( x - 9 )^2 + 5

    • C. 

      F (x) = ( x + 10 )^2 + 0

    • D. 

      F (x) = ( x - 10 )^2 + 5

  • 18. 
    Completing the Square 1 Complete the square to get this thing in the form: f(x) = a(x-h)2+k f (x) = 4x^2  - 16x  + 20Factor  - 1 out of the first TWO terms.
    • A. 

      F (x) = - 4( x + 4 )^2 + 4

    • B. 

      F (x) = - 2( x - 4 )^2 + 5

    • C. 

      F (x) = - ( x + 7 )^2 + 4

    • D. 

      F (x) = - 5( x - 5 )^2 + 2

  • 19. 
    Completing the Square 1 Complete the square to get this thing in the form: f(x) = a(x-h)2+k   f (x) = 4x^2  - 16x  + 20Factor 4 out of the first TWO terms.
    • A. 

      F (x) = - 6( x - 1 )^2 + 8

    • B. 

      F (x) = 3( x + 2 )^2 – 2

    • C. 

      F (x) = 4( x + 1 )^2 – 3

    • D. 

      F (x) = 4( x - 2 )^2 + 4

  • 20. 
    Function Notation 1 x2=x^2 given the function: f ( x ) = 10 + 6x^2 find:f ( -5 )
    • A. 

      F ( -5 ) = 160

    • B. 

      F ( 5 ) = -105

    • C. 

      F ( 9 ) = -642

    • D. 

      F ( 0 ) = -8

  • 21. 
    Function Notation 1 x2=x^2 given the function: f ( x ) = 2x^2 + 6x – 7 find:f ( 1 )
    • A. 

      F ( 7 ) = 795

    • B. 

      F ( x ) = 2x^2 + 6x – 7

    • C. 

      F ( 3 ) = 3

    • D. 

      F ( -5 ) = 148

  • 22. 
    Function Notation: f(x+h) x2=x^2 given the function: f ( x ) = -9x^2 + 6find: f(x+h)
    • A. 

      F ( x + h ) = -4x - 4h – 6

    • B. 

      F ( x + h ) = 6 + 7x + 7h

    • C. 

      F ( x + h ) = -9x^2 - 18xh - 9h^2 + 6

    • D. 

      F ( x + h ) = 5 - 2x - 2h

  • 23. 
    Function Notation: f(x+h) x2=x^2 given the function: f ( x ) = 8 + 7x - 2x^2find: f(x+h)
    • A. 

      F ( x + h ) = 3x^2 + 6xh + 3h^2 + 9x + 9h

    • B. 

      F ( x + h ) = 6x + 6h – 5

    • C. 

      F ( x + h ) = 8 - 2x^2 - 4xh - 2h^2

    • D. 

      F ( x + h ) = 8 + 7x + 7h - 2x^2 - 4xh - 2h^2

  • 24. 
    Function Notation: The Difference Quotient x2=x^2 given the function: f ( x ) = 3 + 8x  find:
    • A. 

      8

    • B. 

      -8 + 2x + h

    • C. 

      -5 + 20x + 10h

    • D. 

      -2x - h + 3

  • 25. 
    Function Notation: The Difference Quotient x2=x^2 given the function: f ( x ) = 6x^2 - 4  find:
    • A. 

      16x + 8h – 2

    • B. 

      12x + 6h

    • C. 

      10x + 5h

    • D. 

      8

  • 26. 
    Function Notation: The Difference Quotient x2=x^2 given the function: f ( x ) = 3 + 2x - 3x^2  find:
    • A. 

      -20x - 10h

    • B. 

      -6 - 4x - 2h

    • C. 

      2 - 6x - 3h

    • D. 

      -8 + 2x + h

  • 27. 
    Function Notation: f(x+h) x2=x^2 given the function: f ( x ) = -10 - 9x - 2x^2find: f(x+h)
    • A. 

      F ( x + h ) = -3 + 3x + 3h + 2x^2 + 4xh + 2h^2

    • B. 

      F ( x + h ) = x + h – 4

    • C. 

      F ( x + h ) = 5x + 5h – 5

    • D. 

      F ( x + h ) = -10 - 9x - 9h - 2x^2 - 4xh - 2h^2

  • 28. 
    Function Notation 1 x2=x^2 given the function: f ( x ) = -5x - 5 find:f ( 3 )
    • A. 

      F ( 3 ) = -20

    • B. 

      F ( -5 ) = 53

    • C. 

      F ( 9 ) = 574

    • D. 

      F ( -3 ) = -197