Pretest On Vectors Using Maple

10 Questions | Total Attempts: 52

SettingsSettingsSettings
Pretest Quizzes & Trivia

This is a pretest quiz on vector calculus using Maple CAS. This quiz helps us to what extent you know the topic So answer the questions in the quiz without referring to web/others.


Questions and Answers
  • 1. 
    When working with vectors on Maple, the first thing to do is to load…
    • A. 

      With(LinearAlgebra) package

    • B. 

      With(VectorCalculus) package

    • C. 

      With(Student[VectorCalculus]) package

    • D. 

      All of the above

  • 2. 
    Inorder to execute the command u:=<1|2|3>; one of the following package has to load first
    • A. 

      With(LinearAlgebra) package

    • B. 

      With(VectorCalculus) package

    • C. 

      With(Student[VectorCalculus]) package

    • D. 

      No package required

  • 3. 
    To find the magnitude of a vector u in LinearAlgebra package the command is
    • A. 

      VectorNorm(u);

    • B. 

      Magnitude(u);

    • C. 

      Norm(u);

    • D. 

      None None None

  • 4. 
    One of the following is the command to get the cross product of two vectors u and v …
    • A. 

      U. v; u. v;

    • B. 

      Uxv;

    • C. 

      U&xv;

    • D. 

      U&v

  • 5. 
    One of the following is the command to get the dot product of two vectors u and v …
    • A. 

      U.v;

    • B. 

      Dotproduct(u,v);

    • C. 

      Dotpro(u,v);

    • D. 

      DotPro(u,v);

  • 6. 
    The command to get the gradient of scalar function f(x,y,z)=x^2+xyz  in Maple after loading the suitable package is…
    • A. 

      Grad(x^2+xyz, [x,y,z]);

    • B. 

      Grad(x^2+x*y*z, [x,y,z]);

    • C. 

      Grad(x*2+xyz, [x,y,z]);

    • D. 

      Grad(x^2+x*y*z);

  • 7. 
    The command to get the divergence of vector function f(x,y,z)=xi+xyj+xzk using Maple after loading the suitable package is…
    • A. 

      Diverge([x,xy,xz]);

    • B. 

      Div([x,xy,xz]);

    • C. 

      Divr([x,xy,xz]);

    • D. 

      Diverg([x,xy,xz]);

  • 8. 
    The command VectorAngle((u,v)); in LinearAlgebra package to get the angle
    • A. 

      Cosine

    • B. 

      Sine

    • C. 

      Tangent

    • D. 

      None

  • 9. 
    One of the following command computes the curl of the vector field  f(x,y,z)=xi+xyj+xzk using Maple is
    • A. 

      Curl([x,xy,xz]);

    • B. 

      Div([x,xy,xz]);

    • C. 

      Divr([x,xy,xz]);

    • D. 

      Curl([x,xy,xz],[x,y,z]);

  • 10. 
    The command to enter the vector u = ( 1 , 2, 3 ) in Maple is 
    • A. 

      U:=Vector([1,-2,4]);

    • B. 

      U:=< 1 -2 4 >;

    • C. 

      U:=(1,-2,4);

    • D. 

      None

Back to Top Back to top