It is the value assigned by the Dijkstra algorithm that designates the number of hops in the network.
It is the value used by the DUAL algorithm to determine the bandwidth for the link.
It is the metric, which is cost.
It is the administrative distance.
Clears an unreachable route from the routing table after the invalid timer expires prevents regular update messages from inappropriately reinstating a route that may have gone bad
Removes an unreachable route from the routing table after the flush timer expires
Limits the period of time or number of hops a packet can traverse through the network before it should be discarded
Used to mark the route as unreachable in a routing update that is sent to other routers
When there is a low bandwidth connection
When the connection is on a shared medium
When the connection is serial instead of Ethernet
When the link is always busy
Used to confirm receipt of certain types of OSPF packets
Used to establish and maintain adjacency with other OSPF routers
Used to request more information about any entry in the BDR
Used to announce new OSPF information and to reply to certain types of requests
The same process ID
The same area ID
Network addresses and wildcard masks
The same router ID
The same loop back address
IGRP
RIPv1
RIPv2
EIGRP
The path learned via EIGRP
The path learned via RIP
The path with the highest metric value
Both paths with load balancing
The IP address of host A is incorrect.
The default gateway of host A is incorrect.
The Fa0/1 interfaces of the two routers are configured for different subnets.
The subnet mask for the Fa0/0 interface of R1 is incorrect.
Flash memory
RAM
NVRAM
TFTP server
Configuration register
R2(config)# router ospf 1 R2(config-router)# network 192.168.2.0 0.0.0.255 area 0 R2(config-router)# network 10.1.1.0 0.0.0.3 area 0
R2(config)# router ospf 1 R2(config-router)# network 192.168.2.0 0.0.0.255 area 0 R2(config)# router ospf 2 R2(config-router)# network 10.1.1.0 0.0.0.3 area 0
R2(config)# router ospf 1 R2(config-router)# network 192.168.2.0 0.0.0.255 area 0 R2(config-router)# network 10.1.1.0 0.0.0.3 area 1
R2(config)# router ospf 1 R2(config-router)# network 192.168.2.0 0.0.0.255 area 0 R2(config-router)# network 10.0.0.0 0.0.0.3 area 1
Enable the serial interfaces of both routers.
Configure EIGRP to send periodic updates.
Configure the same hello interval between the routers.
Configure both routers with the same EIGRP process ID.
Check if the interfaces of the routers are enabled.
Check the hello and dead intervals between the routers.
Check the process ID of both routers.
Check if CDP is enabled on all the routers.
Configure the router ID on both routers.
Configure the R2 router interfaces for area 0.
Configure a loopback interface on both routers.
Configure the proper subnet masks on the router interfaces.
A static route will be updated in the routing table.
The traffic from the Internet will be directed to R2.
The traffic from the source network 172.16.0.0/22 will be blocked.
The route will be specified as the default route for all networks not defined in the routing table.
All the broadcasts will be forwarded via the S0/0/0 interface of R2.
The data will be transmitted via R3-R2.
The data will be transmitted via R3-R1-R2.
The traffic will be load-balanced between two paths — one via R3-R2, and the other via R3-R1-R2.
The data will be transmitted via R3-R2, and the other path via R3-R1-R2 will be retained as the backup path.
D 172.16.1.0/24 [90/2195456] via 192.168.200.1, 00:00:09, Serial0/0/0
O 172.16.1.0/24 [110/1012] via 192.168.200.1, 00:00:22, Serial0/0/0
R 172.16.1.0/24 [120/1] via 192.168.200.1, 00:00:17, Serial0/0/0
I 172.16.1.0/24 [100/1192] via 192.168.200.1, 00:00:09, Serial0/0/0
Authentication
Link-state advertisements
Hold-down timers
Spanning Tree Protocol
Split horizon
10.0.0.0/16 is subnetted, 1 subnets D 10.5.0.0[90/205891] via 192.168.1.2, S0/0/0
10.0.0.0/24 is subnetted, 4 subnets D 10.5.0.0[90/205198] via 192.168.1.2, S0/0/0
10.0.0.0/22 is subnetted, 1 subnets D 10.5.0.0[90/205901] via 192.168.1.2, S0/0/0
10.0.0.0/8 is subnetted, 4 subnets D 10.5.0.0[90/205001] via 192.168.1.2, S0/0/0
3
4
5
7
RIP is a link-state routing protocol.
RIP uses only one metric—hop count— for path selection.
Advertised routes with hop counts greater than 10 are unreachable.
Messages are broadcast every 10 seconds.
IP 172.16.0.18, subnet mask 255.255.255.0
IP 172.16.32.15, subnet mask 255.255.255.240
IP 172.16.0.18, subnet mask 255.255.255.252
IP 172.16.32.18, subnet mask 255.255.255.252
Enter the command clear ip route *.
Lower the administrative distance for the new path to ensure that it is used first.
Negate the original command and enter a new static route with the new next hop.
Nothing. The router will learn of the new next hop and automatically update the route table.
Hub
Router
Access point
Ethernet switch
255.255.224.0
255.255.240.0
255.255.248.0
255.255.252.0
Connecting a host to a switch
Connecting a switch to a router
Connecting a switch to a switch
Connecting a host to a router console port
Wait!
Here's an interesting quiz for you.