Summative Exam: Part 1 (Multiple Choice)

75 Questions | Total Attempts: 15

Settings

• 1.
A piece of cloth is needed to patch a hole in a pants' pocket whose dimension is bounded by , and the horizontal line.
• 2.
Jack, a former seaman, wants his architect friend to build him a cabin which looks like a deck and has two rooms. The whole cabin is bounded by walls whose equations are  and .
• 3.
The process of finding the antiderivative of a function is called ____________.
• A.

A. Antidifferentiation

• B.

B. Differentiation

• C.

C. Antiderivatives

• D.

Derivation

• 4.
In F(x)+C, C is called _______________.
• A.

A. Arbitrary constant

• B.

B. Coefficient constant

• C.

C. Limited constant

• D.

D. Derived constant

• 5.
Given , what do we call the function ?
• A.

A. Integral

• B.

B. Integrand

• C.

C. Derivative

• D.

D. Antiderivative

• 6.
What is the general antiderivative of ?
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 7.
• A.

A. True

• B.

B. Sometimes true

• C.

C. False

• D.

D. Sometimes false

• 8.
Which is always true of the following statements?
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 9.
Given and . What are their points of intersection?
• A.

A. (-9, -6), (-4, -4)

• B.

B. (-9, 6), (4, -4)

• C.

C. (9, 6), (4, -4)

• D.

D. (9, 6), (4, 4)

• 10.
Evaluate .
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 11.
Evaluate
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 12.
What is the definite integral of ?
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 13.
Find the antiderivative of .
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 14.
Find the integral of .
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 15.
Integrate
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 16.
The integral  can be evaluated by _________.
• A.

A. letting

• B.

B. letting

• C.

C. letting

• D.

D. letting

• 17.
The Fundamental Theorem of Calculus is defined as_______.
• A.

A.

• B.

B.

• C.

C.

• D.

D.

• 18.
Which is true of the following statements?
• A.

A. In Fundamental Theorem of Calculus, the function F(x) is the derivative function of the integrand.

• B.

B. In Fundamental Theorem of Calculus, the function F(x) is the antiderivative function of the integrand.

• C.

C. In Fundamental Theorem of Calculus, the function F(x) is the limit function of the integrand.

• D.

D. In Fundamental Theorem of Calculus, the function F(x) is the inverse function of the integrand.

• 19.
Which of the following statements is true?
• A.

A. The definite integral of   on the interval  is 0.

• B.

B. The definite integral of   on the interval  is 1.

• C.

C. The definite integral of   on the interval  is .

• D.

D. The definite integral of   on the interval  is  .

• 20.
Which of the following statements is NOT true?
• A.

A. When we evaluate , the result is 4.

• B.

B. When we evaluate , the result is -2.

• C.

C. When we evaluate , the result is 6.

• D.

D. When we evaluate , the result is 18.

• 21.
Which of the following statements is NOT true?
• A.

A. The integral of  within the interval [0, 1] is 15

• B.

B. The integral of  within the interval [0, 1] is 1.666 ...

• C.

C. The integral of  within the interval [0, 1] is 2.5

• D.

D. The integral of  within the interval [0, 1] is 10.

• 22.
Evaluate
• A.

A. -18

• B.

B. 18

• C.

C, -6

• D.

D. 6

• 23.
Integration by substitution is also called the ‘Reverse Chain Rule’.
• A.

A. The statement is true.

• B.

B. The statement is false.

• C.

C. The statement is sometimes true.

• D.

D. The statement is seldom false.

• 24.
Evaluate .
• A.

A. -8

• B.

B. 8

• C.

C. -16

• D.

D. 16

• 25.
To evaluate the definite integral , we let _________________.
• A.

A.

• B.

B.

• C.

C.

• D.

D.