Math Skill Questions

8 Questions

Settings
Please wait...
Math Skill Questions

Skills are something that people develop through a lot of practice and you can’t be a professional without the skills. The quiz below is designed to test your math skills and see if you are all that! Give it a try and see if you should polish up on some problems.


Questions and Answers
  • 1. 
    Anosov automorphism is defined as a what?
    • A. 

      Hyperbolic Linear Map

    • B. 

      Integral

    • C. 

      Derivative

    • D. 

      Theory

    • E. 

      Geometric Proof

  • 2. 
    A box classified in geometric terms is a what?
    • A. 

      A polyhedron.

    • B. 

      A shape.

    • C. 

      A polyhedron whose faces are all rectangles.

    • D. 

      A polyhedron with multiple sides.

    • E. 

      A rectangular prism.

  • 3. 
    Elliptic sines are defined as what? Hint: It is represented as: S (a , 0 , z ) = sin (√a z )
    • A. 

      Elliptic cosine defined as an odd Mathieu function ser(z , q ) with characteristic value ar.

    • B. 

      Elliptic sine defined as an even Mathieu function ser(z , q' ) with characteristic value ar.

    • C. 

      Euclydian geometry.

    • D. 

      Elliptic sine defined as an odd Mathieu function ser(z , q ) with characteristic value ar.

    • E. 

      None of the above.

  • 4. 
    If a=b, b=c, c=d, d=?
    • A. 

      D-(abc)

    • B. 

      A

    • C. 

      C+b

    • D. 

      D-c

    • E. 

      None of the above.

  • 5. 
    Calculus can be applied as polynomials.
    • A. 

      True

    • B. 

      False

    • C. 

      Can't be determined with the information give.

  • 6. 
    If f(x) = x2, then...
    • A. 

      F'(x) = x/2x

    • B. 

      X = f'

    • C. 

      F'(x) = 2x

    • D. 

      F'(x) =2x(f'(x))

    • E. 

      X = x(x=1)

  • 7. 
    • A. 

      Let X be a normed space, M and N be algebraically complemented subspaces of X i.e. M+N = X and M ∩ N = {0}, Φ:X → X/M be the quotient map, Φ:MxN → X be the natural isomorphism (x,y)| → x+y, and P:X → M,P(x+y) = x,x ∈ M,y ∈ N

    • B. 

      M ∩ N = {0}, Φ:X → X/M be the quotient map, Φ:MxN → X be the natural isomorphism (x,y)| → x+y, and P:X → M,P(x+y

    • C. 

      X be the disk algebra, i.e., the space of all analytic functions on {z ∈ C:|z| < 1} which are continuous on the closure of D. Then the subspace of C(T) consisting of the restrictions of functions of X to T = {z ∈ C:|z| = 1} is not complemented in X.

    • D. 

      (x,y)| → x+y, and P:X → M,P(x+y) = x,x ∈ M,y ∈ N be the projection of X on M along N.

    • E. 

      None of the above?

  • 8. 
    The following is an example of what?
    • A. 

      Binary Bracketing

    • B. 

      Abel's Binomial Theorem

    • C. 

      Pascal's Formula

    • D. 

      Stanley's Identity

    • E. 

      Bernoulle Triangle