BI 232: Human Anatomy And Physiology! Toughest Trivia Quiz

125 Questions

Settings
Please wait...
Brain Quizzes & Trivia

Questions and Answers
  • 1. 
    • A. 

      Caudal, Rostral, Caudal, Rostral

    • B. 

      Caudal, Rostral, Rostral, Caudal

    • C. 

      Rostral, Caudal, Rostral, Caudal

    • D. 

      Rostral, Caudal, Caudal, Rostral

  • 2. 
    Three major parts of brain include  1) hemispheres (R,L) 2) "little brain" (movement) 3) Pons, medulla (ANS)
    • A. 

      Cerebrum, cerebellum, brainstem

    • B. 

      Frontal lobe, Occipital Lobe, Temporal Lobe

    • C. 

      Lateral brain, posterior brain, inferior brain

    • D. 

      Cerebrum, corpus callosum, brainstem

  • 3. 
    [blank] are the folds of the brain surface (plural)
  • 4. 
    [blank] are the grooves of the brain surface (plural)
  • 5. 
    Gray matter (neuromas, dendrites, etc...) cover the _____ of the brain while white matter (myelinated axons) lie ______ within the brain. This is contrast to the spinal cord, where ________ matter form horns on the inside and the _____ matter form columns on the outside
    • A. 

      Deep, surface, gray, white

    • B. 

      Surface, deep, white, gray

    • C. 

      Meninges, deep, white, gray

    • D. 

      Surface, deep, gray, white

  • 6. 
    The following structures are key to motor movements
    • A. 

      Broca's

    • B. 

      Wernicke's

    • C. 

      Cerebellum

    • D. 

      Pre Central Gyrus of Frontal Lobe

    • E. 

      Post-central Gyrus of Parietal Lobe

    • F. 

      Thalamus

    • G. 

      Corpora Quadrigemina

    • H. 

      Epithalamus

    • I. 

      Medulla Oblongata

    • J. 

      Hypothalamus

  • 7. 
    The following structures are key to Sensory functioning
    • A. 

      Broca's

    • B. 

      Wernicke's

    • C. 

      Cerebellum

    • D. 

      Pre Central Gyrus of Frontal Lobe

    • E. 

      Post-central Gyrus of Parietal Lobe

    • F. 

      Thalamus

    • G. 

      Corpora Quadrigemina

    • H. 

      Epithalamus

    • I. 

      Medulla Oblongata

    • J. 

      Hypothalamus

  • 8. 
    CSF is important for all of the following except...
    • A. 

      Protection 

    • B. 

      Buoyancy to reduce weight on neck

    • C. 

      Cushion

    • D. 

      Transport and exchange of nutrients and waste

    • E. 

      Oxygenating the brain

  • 9. 
    ________to the cerebral aqueduct, the midbrain consists mainly of the cerebral peduncles—two stalks that _____ the cerebrum to the brainstem. Each peduncle has three main components: tegmentum, substantia nigra, and cerebral crus. 
    • A. 

      Posterior; Anchor

    • B. 

      Posterior; Connect

    • C. 

      Anterior; Connect

    • D. 

      Anterior; Anchor

  • 10. 
    The reticular formation (Reticular Activating System, RAS) of brain...
    • A. 

      Relay center of all senses

    • B. 

      Responsible for visual and auditory reflexes

    • C. 

      Is a loose web of gray matter that runs vertically through all levels of the brainstem in medulla that is responsible for consciousness. 

    • D. 

      Bridging low brain with high brain

  • 11. 
     Right and left cerebellar hemispheres connected by a narrow wormlike bridge called the
    • A. 

      Corpus Callosum 

    • B. 

      Longitudinal Fissue

    • C. 

      Pons

    • D. 

      Vermis

  • 12. 
     In a sagittal section of the cerebellum, the white matter exhibits a branching, fernlike pattern called the 
    • A. 

      Reticular formation

    • B. 

      Arbor vitae

    • C. 

      Cauliflower dispersal 

    • D. 

      Tracts

  • 13. 
     Deep nuclei embedded in the white matter is responsible for input in cerebellum. All output goes to cortex
    • A. 

      True

    • B. 

      False

  • 14. 
    _______  are the most abundant type of neuron in the entire brain
    • A. 

      Granule cells

    • B. 

      Glial cells

    • C. 

      Purkinje cells

    • D. 

      Ependymal cells

  • 15. 
    Purkinje cells in cerebellum are distinct for their tremendous profusion of _____ compressed into a single plane.  Their ______ travel to the deep nuclei, where they synapse on ______ neurons that issue fibers to the brainstem.
    • A. 

      Dendrites; axons; output

    • B. 

      Axons; dendrites; output

    • C. 

      Dendrites; axons; input

    • D. 

      Axons; dendrites; input

  • 16. 
    Which tracts run through Pons
    • A. 

      Medial Lemiscus & Tectospinal tracts

    • B. 

      Spinothalamic 

    • C. 

      Olfactory & Optic

    • D. 

      Vagus & Hypoglossal

  • 17. 
    The folds of the cerebellum are ____
    • A. 

      Vermis

    • B. 

      Deep Nuclei

    • C. 

      Gyri

    • D. 

      Folia

    • E. 

      Sulci

  • 18. 
    Hydrocephalus . It typically occurs in inter ventricular foramen, cerebral aqueduct and/or aperture of fourth ventricle (median, lateral) given their narrow nature.
    • A. 

      Is a condition in which excess blood builds up within the brain and may increase pressure within the head. 

    • B. 

      Is a condition in which excess cerebrospinal fluid (CSF) builds up within the ventricles (fluid-containing cavities) of the brain and may increase pressure within the head

    • C. 

      Is a condition in which a lack of cerebrospinal fluid (CSF) in the brain and may increase pressure within the head

  • 19. 
    Purkinje cells are characteristically 
    • A. 

      Small and inhibitory (GABA)

    • B. 

      Large and excitatory (Glutamate)

    • C. 

      Large and inhibitory (Glutamate)

    • D. 

      Large and inhibitory (GABA)

  • 20. 
    Meningitis occurs in CNS often following respiratory, throat or ear infections. The ___ and ____ are most often affected causing swelling, high fever, stiff neck, headache and vomiting. It is diagnosed by examining ____ for white blood cells and bacteria. 
    • A. 

      Pia Mater and Arachnoid mater; Blood

    • B. 

      Dura Mater and Arachnoid mater; CSF

    • C. 

      Dura Mater and Arachnoid villi/granulations; Blood

    • D. 

      Pia Mater and Arachnoid mater; CSF

  • 21. 
    After the 4th ventricle, CSF goes to the central canal of spinal cord through the ______ aperture or back throughout the arachnoid space of brain via the ____ aperture. 
    • A. 

      Transverse; lateral

    • B. 

      Median; lateral

    • C. 

      Lateral; median

    • D. 

      Transverse; median

  • 22. 
    Olfactory Nerve (CN 1) originates in the ______ and ends in the _____. It functions to _____ and passes through the _________ opening. 
    • A. 

      Olfactory Mucosa, Olfactory Bulb; smell, superior orbital tissue of ethmoid bone

    • B. 

      Olfactory Mucosa, Olfactory Bulb; smell, cribriform foramina of ethmoid bone

    • C. 

      Olfactory Mucosa, Olfactory Bulb; hear, cribriform foramina of ethmoid bone

    • D. 

      Thalamus, Olfactory Bulb; smell, foramen oval of sphenoid bone

    • E. 

      Thalamus, Olfactory Bulb; smell, cribriform foramina of ethmoid bone

    • F. 

      Olfactory Mucosa, Olfactory Bulb; smell, superior orbital tissue of sphenoid bone

  • 23. 
    Optic Nerve CN 2 originates in the ______ and inserts to the ______. It functions for _______ and passes through the _____ opening. 
    • A. 

      Retina, Thalamus; eye movements, optic foramen/canal

    • B. 

      Retina, Thalamus; vision, superior orbital tissue

    • C. 

      Thalamus, Retina; vision, superior orbital tissue

    • D. 

      Retina, Thalamus; vision, optic foramen/canal

    • E. 

      Thalamus, Retina; optic foramen/canal

  • 24. 
    Oculomotor CN III originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Inferior eye muscles (iris, ciliary muscles), mid brain; pupillary reflex and eyelid raise, superior orbital fissure

    • B. 

      Mid brain, inferior eye muscles (iris, ciliary muscles); pupillary reflex and eyelid raise, superior orbital fissure

    • C. 

      Mid brain, posterior brain stem; pupillary reflex and eyelid raise, superior orbital fissure

    • D. 

      Mid brain, posterior brain stem; eye movements (rotate medially), superior orbital fissure

    • E. 

      Inferior pons, lateral rectus eye muscles; lateral eye movement, superior orbital fissure

  • 25. 
    Trochlear CN IV originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Inferior eye muscles (iris, ciliary muscles), mid brain; pupillary reflex and eyelid raise, superior orbital fissure

    • B. 

      Mid brain, inferior eye muscles (iris, ciliary muscles); pupillary reflex and eyelid raise, superior orbital fissure

    • C. 

      Mid brain, posterior brain stem; pupillary reflex and eyelid raise, superior orbital fissure

    • D. 

      Mid brain to the superior oblique muscle; eye movements (rotate medially), superior orbital fissure

    • E. 

      Inferior pons, lateral rectus eye muscles; lateral eye movement, superior orbital fissure

  • 26. 
    Trigeminal CN V (mandibular branch) originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: inferior face regions & floor of mouth to the Pons & Motor: Pons to Digastric, masseter, mylohyoid; masticate, foramen ovale

    • B. 

      Sensory: pons to inferior face regions & floor of mouth, Motor: Pons to Digastric, masseter, mylohyoid  ; masticate, foramen ovale

    • C. 

      Sensory: inferior face regions & floor of mouth to pons Motor: pons to Digastric, masseter, mylohyoid; masticate, foramen rotundum 

    • D. 

      Pons; Digastric, masseter, mylohyoid; masticate, foramen ovale

  • 27. 
    Trigeminal CN V (Optothalamic branch) originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: pons, Motor: Digastric, masseter, mylohyoid; Sensory: inferior face regions & floor of mouth, Motor: Pons; masticate, foramen ovale

    • B. 

      Superior face regions & lacrimal gland, Pons; sense touch & face pain, superior orbital fissure 

    • C. 

      Middle face regions & maxillary sinus, Pons; sense touch & face pain, foramen rotundum and infraorbital foramen

    • D. 

      Inferior face regions & lacrimal gland, Pons; sense touch & face pain, superior orbital fissure 

  • 28. 
    Trigeminal CN V (Maxillary branch) originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: pons, Motor: Digastric, masseter, mylohyoid; Sensory: inferior face regions & floor of mouth, Motor: Pons; masticate, foramen ovale

    • B. 

      Superior face regions & lacrimal gland, Pons; sense touch & face pain, superior orbital fissure 

    • C. 

      Middle face regions & maxillary sinus, Pons; sense touch & face pain, foramen rotundum and infraorbital foramen

  • 29. 
    Abducens CN VI originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Inferior pons, medial rectus eye muscles; medial eye movement, superior orbital fissure

    • B. 

      Mid brain, inferior eye muscles (iris, ciliary muscles); pupillary reflex and eyelid raise, superior orbital fissure

    • C. 

      Inferior pons, lateral rectus eye muscles; lateral eye movement, superior orbital fissure

    • D. 

      Mid brain to the superior oblique muscle; eye movements (rotate medially), superior orbital fissure

  • 30. 
    Facial CN VII originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. It has five branches (temporal, zygomatic, cervical, buccal, mandibular). 
    • A. 

      Sensory: Taste buds (2/3's of tongue anterior) into the Thalamus; Motor: Pons into the Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. Internal acoustic meatus and stylomastoid foramen

    • B. 

      Sensory: Taste buds (2/3's of tongue anterior) into the Mid brain; Motor: Medulla Oblongata into the Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. Internal acoustic meatus and stylomastoid foramen

    • C. 

      Sensory: Taste buds (2/3's of tongue anterior) into the Medulla oblongata; Motor: Pons into the Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. Internal acoustic meatus and stylomastoid foramen

    • D. 

      Mid brain, posterior brain stem; eye movements (rotate medially), superior orbital fissure

  • 31. 
    Vestibulocochlear CN VIII originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening.
    • A. 

      Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands, Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; taste, facial expressions and tears, saliva and mucous. 

    • B. 

      Sensory: Cochlea to Medulla/Pons, (technically) Motor: Pons to cochlear hairs; equilibrium and hearing, internal acoustic meatus

    • C. 

      Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. 

    • D. 

      Sensory: Cochlea to Medulla/Pons, (technically) Motor: Pons to cochlear hairs; equilibrium and hearing, external acoustic meatus

  • 32. 
    Glossopharyngeal CN IX originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands, Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; taste, facial expressions and tears, saliva and mucous. 

    • B. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, internal acoustic meatus

    • C. 

      Sensory: Pharynx, middle and outer ear, posterior one-third of the tongue to Medulla Oblongata & Motor: Medulla Oblongata to tongue glands and stylopharyngeal muscle (swallowing); taste and tongue touch, salivation, swallowing, gag reflex all passes through Jugular Foramen

    • D. 

      Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. 

    • E. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, external acoustic meatus

  • 33. 
    Vagus CN X originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands, Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; taste, facial expressions and tears, saliva and mucous. 

    • B. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, internal acoustic meatus

    • C. 

      Sensory: Pharynx, middle and outer ear to Medulla Oblongata & Motor: Medulla Oblongata to tongue glands and stylopharyngeal muscle (swallowing); taste and tongue touch, salivation, swallowing, gag reflex all passes through Jugular Foramen

    • D. 

      Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. 

    • E. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, external acoustic meatus

    • F. 

      Sensory: Internal organs to Medulla Oblongata, Motor: Medulla Oblongata to tongue and internal organs; taste, internal organ sensation, speech, swallowing, heart function, bronchoconstriction all passes through Jugular Foramen

  • 34. 
    Accessory CN XI originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands, Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; taste, facial expressions and tears, saliva and mucous. 

    • B. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, internal acoustic meatus

    • C. 

      Sensory: Pharynx, middle and outer ear to Medulla Oblongata & Motor: Medulla Oblongata to tongue glands and stylopharyngeal muscle (swallowing); taste and tongue touch, salivation, swallowing, gag reflex all passes through Jugular Foramen

    • D. 

      Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. 

    • E. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, external acoustic meatus

    • F. 

      Sensory: Internal organs to Medulla Oblongata, Motor: Medulla Oblongata to tongue and internal organs; taste, internal organ sensation, speech, swallowing, heart function, bronchoconstriction all passes through Jugular Foramen

    • G. 

      C1-C6 to Pharynx, Trapezius & Sternocleidomastoid; swallowing, neck & shoulder & head movements all passes through Jugular Foramen. 

  • 35. 
    Hypoglossal CN XII originates in the ______ and ends in the _______. It functions to _______ and passes through the ______ opening. 
    • A. 

      Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands, Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; taste, facial expressions and tears, saliva and mucous. 

    • B. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, internal acoustic meatus

    • C. 

      Sensory: Pharynx, middle and outer ear to Medulla Oblongata & Motor: Medulla Oblongata to tongue glands and stylopharyngeal muscle (swallowing); taste and tongue touch, salivation, swallowing, gag reflex all passes through Jugular Foramen

    • D. 

      Sensory: Taste buds (2/3's of tongue anterior) & Motor: Pons; Sensory: Thalamus & Motor: Digastric muscles, stapedius, stylohyoid, salivary, tear and nasal glands; taste, facial expressions and tears, saliva and mucous. 

    • E. 

      Sensory: Cochlea to Medulla/Pons, Motor: Pons to cochlear hairs; equilibrium and hearing, external acoustic meatus

    • F. 

      Sensory: Internal organs to Medulla Oblongata, Motor: Medulla Oblongata to tongue and internal organs; taste, internal organ sensation, speech, swallowing, heart function, bronchoconstriction all passes through Jugular Foramen

    • G. 

      C1-C6 to Pharynx, Trapezius & Sternocleidomastoid; tongue movements and speech, all passes through Jugular Foramen. 

    • H. 

      Medulla oblongata to the intrinsic/extrinsic tongue; tongue movements, hypoglossal canal

  • 36. 
    Collateral blood flow 
    • A. 

      Starts in choroid plexus

    • B. 

      Starts in heart

    • C. 

      Enables brain to re-route blood when arteries are blocked (highway metaphor)

    • D. 

      Breaks up blockages in arteries 

  • 37. 
    The two point discrimination test assesses the ability of an area of the skin to distinguish one point vs two points. The ____ the points, the _______ the innervation and receptor _______ . 
    • A. 

      Wider; finer; density

    • B. 

      Narrower; less fine; density

    • C. 

      Narrower; finer; density

    • D. 

      Wider; less fine; propensity

  • 38. 
    ____ is pain perceived at a location other than the site of the painful stimulus.(eg. male heart attack)
  • 39. 
    When the direct or _______  pathway for ______ in the basal ganglia is impaired, this results in tremors and difficulty initiating movement, characteristic of  ______ disease. 
    • A. 

      Inhibitory; glutamate; Parkinson's, Huntington's

    • B. 

      Inhibitory; GABA; Parkinson's, Huntington's

    • C. 

      Inhibitory; GABA; Ballism 

    • D. 

      Excitatory; glutamate; Parkinson's, Huntington's

    • E. 

      Excitatory; glutamate; Ballism 

    • F. 

      Excitatory; GABA; Parkinson's, Huntington's

  • 40. 
    When the indirect or _______  pathway for ______ in the basal ganglia is impaired, this results in flailing, ballistic, undesired movements of the limb,  characteristic of  ______ disease. 
    • A. 

      Inhibitory; glutamate; Parkinson's, Huntington's

    • B. 

      Inhibitory; GABA; Parkinson's, Huntington's

    • C. 

      Inhibitory; GABA; Ballism 

    • D. 

      Excitatory; glutamate; Parkinson's, Huntington's

    • E. 

      Excitatory; glutamate; Ballism 

    • F. 

      Excitatory; GABA; Parkinson's, Huntington's

  • 41. 
    Adrenergic system
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 42. 
    Thoraco-lumbar division with nerves that often go multiple effectors
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 43. 
    Craniosacral division where nerves usually go one effector as a time
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 44. 
    Cholinergic system
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 45. 
    Enervated by CN III, VII, IX, X
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 46. 
    (Spinal Cord) Pre-ganglionic/myelinated (long) ->> ACH ->> Ganglion->> Post-ganglionic/non-myelinated (short)->> effectors/organs
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 47. 
    (Spinal Cord) Pre-ganglionic/myelinated (short) ->> ACH ->> Ganglion->> Post-ganglionic/nonmyelinated (long) ->> Norepinephrine/epinephrine ->> effectors/organs
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 48. 
    NT stopped by MAO
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 49. 
    NT stopped by acetylcholinesterase
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 50. 
    Receptors
    • Nicotinic (excitatory)
      • Muscarinic (inhibitory) (can excite though)
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 51. 
    Receptors 
    • Alpha (excitatory) (though both, dependent on effector)
      • Beta (inhibitory)
    • A. 

      Sympathetic Nervous System

    • B. 

      Parasympathetic Nervous System

  • 52. 
    Vision pathway from light to brain is....
    • A. 

      Eye –> cornea -> pupil/iris -> lens -> ganglion cell ->  bi-polar cell ->  retina (Photoreceptors: cone/rod) -> optic nerve -> optic chasm -> LGN (thalamus) -> occipital lobe

    • B. 

      Eye –> cornea -> pupil/iris -> lens -> retina (Photoreceptors: cone/rod) -> ganglion cell ->  bi-polar cell -> optic nerve -> optic chasm -> LGN (thalamus) -> occipital lobe

    • C. 

      Eye –> cornea -> pupil/iris -> retina (Photoreceptors: cone/rod) -> lens  -> bi-polar cell -> ganglion cell  -> optic nerve -> optic chasm -> LGN (thalamus) -> occipital lobe

    • D. 

      Eye –> cornea -> pupil/iris -> lens -> retina (Photoreceptors: cone/rod) -> bi-polar cell -> ganglion cell  -> optic nerve -> optic chasm -> LGN (thalamus) -> occipital lobe

  • 53. 
    Hearing Pathway from sound to brain is
    • A. 

      Outer ear (pinna/auricle) -> Middle ear (Tympanic membrane or eardrum; ossicles: incus (anvil), stapes (stirrup), malleus or hammer -> oval window -> Inner Ear (cochlea filled with fluid) -> mechanoreceptor (receive waves from fluid through hair cells) -> vestibulocochlear nerve (CN VIII)

    • B. 

      Hearing Path: Outer ear (pinna/auricle) -> oval window -> Middle ear (Tympanic membrane or eardrum; ossicles: malleus or hammer, incus (anvil), stapes (stirrup) -> Inner Ear (cochlea filled with fluid) -> mechanoreceptor (receive waves from fluid through hair cells) -> vestibulocochlear nerve (CN VIII)

    • C. 

      Outer ear (pinna/auricle) -> Middle ear (Tympanic membrane or eardrum; ossicles: malleus or hammer, incus (anvil), stapes (stirrup) -> oval window -> Inner Ear (cochlea filled with fluid) -> mechanoreceptor (receive waves from fluid through hair cells) -> vestibulocochlear nerve (CN VIII)

    • D. 

      Hearing Path: Outer ear (pinna/auricle) -> Middle ear (Tympanic membrane or eardrum; ossicles: malleus or hammer, incus (anvil), stapes (stirrup) -> Inner Ear (cochlea filled with fluid) -> oval window -> mechanoreceptor (receive waves from fluid through hair cells) -> vestibulocochlear nerve (CN VIII)

  • 54. 
    This type of photoreceptor has low convergence of receptors to ganglion.
    • A. 

      Rods

    • B. 

      Cones

  • 55. 
    This type of photoreceptor has a high convergence of receptors to ganglion.
    • A. 

      Rods

    • B. 

      Cones

  • 56. 
    This type of photoreceptor is located throughout the eye and periphery. 
    • A. 

      Rods

    • B. 

      Cones

  • 57. 
    This type of photoreceptor is located specifically in the fovea centralis of the retina. 
    • A. 

      Rods

    • B. 

      Cones

  • 58. 
    This part of the eye is responsible for coarse focus. 
    • A. 

      Cornea

    • B. 

      Lens 

    • C. 

      Pupil

    • D. 

      Sclera

    • E. 

      Iris

    • F. 

      Retina

  • 59. 
    This part of the eye is responsible for fine focus. 
    • A. 

      Cornea

    • B. 

      Lens 

    • C. 

      Sclera

    • D. 

      Retina

    • E. 

      Pupil

    • F. 

      Iris

  • 60. 
    Failure of aqueous humor to reach the scleral venous sinus causes ____________, a condition analogous to ____________.
    • A. 

      Keratitis; conjunctivitis

    • B. 

      Glaucoma; hydrocephalus

    • C. 

      Keratitis; macular degeneration

    • D. 

      Glaucoma; conjunctivitis

    • E. 

      Stye; hydrocephalus

  • 61. 
    Wavelength frequency determines ______ while ______ determines loudness. _____  soundwaves produce less frequent waves, transduced by the apex or end of the basilar membrane (long fibers) while _____ sound wave produre more frequent waves, transduced by the initial base section of the basilar membrane (short fibers. 
    • A. 

      Pitch; amplitude; low pitch; high pitch

    • B. 

      Amplitude; pitch; low pitch; high pitch

    • C. 

      Amplitude; pitch; high pitch; low pitch

    • D. 

      Pitch; amplitude; high pitch; low pitch

  • 62. 
    Organ of corti contains all of the following except:
    • A. 

      Hair cells (inner & outer)

    • B. 

      Supporting Cells

    • C. 

      Tunnels

    • D. 

      Tectorial Membrane

    • E. 

      Basilar Membrane

    • F. 

      Nerve fibers (cochlear and spiral ganglion

    • G. 

      Stereocilia

    • H. 

      Endolymph

  • 63. 
    Which of the following are filled with Perilymph?
    • A. 

      Scala tympani

    • B. 

      Scala vestibuli

    • C. 

      Scala media 

    • D. 

      Cochlea

    • E. 

      Semicircular canal of vestibular apparatus

    • F. 

      Between the outer wall of the membranous labyrinth and the wall of the bony labyrinth

    • G. 

      Membranous labyrinth of inner ear

  • 64. 
    Which of the following are filled with Endolymph?
    • A. 

      Scala tympani

    • B. 

      Scala vestibuli

    • C. 

      Scala media 

    • D. 

      Cochlea

    • E. 

      Semicircular canal of vestibular apparatus

    • F. 

      Membranous labyrinth of inner ear

    • G. 

      Between the outer wall of the membranous labyrinth and the wall of the bony labyrinth

  • 65. 
    Equilibrium and balance are achieved by the ______ of the vestibular apparatus. 
    • A. 

      Organ of corti

    • B. 

      Cochlea

    • C. 

      Semicircular canals

    • D. 

      Oval window

    • E. 

      Tympanic membrane

    • F. 

      Basilar membrane

  • 66. 
    Equilibrium and balance when you nod your head back and forth are achieved by the ______ of the vestibular apparatus. 
    • A. 

      Organ of corti

    • B. 

      Cochlea

    • C. 

      Semicircular canals

    • D. 

      Oval window

    • E. 

      Tympanic membrane

    • F. 

      Basilar membrane

    • G. 

      Utricle and saccule

  • 67. 
    Motion sickness is due to sensory conflict between 
    • A. 

      Sight (eyes); limb position (spine and joints); balance (cochlea)

    • B. 

      Sight (eyes); limb position (spine and joints); balance (vestibular apparatus)

    • C. 

      Sight (eyes); limb position (spine and joints); balance (tympanic membrane)

    • D. 

      Sight (eyes); heart; balance (vestibular apparatus)

  • 68. 
    For Hearing and Balance, ear utilize
    • A. 

      Photoreceptors

    • B. 

      Mechanoreceptors 

    • C. 

      Proprioceptors

    • D. 

      Nocioceptors

    • E. 

      Chemoreceptors

  • 69. 
    Frequency of light determines _____, while amplitude determines _________. Short waves are blue, long waves are red. 
    • A. 

      Hue; brightness

    • B. 

      Brightness; hue;

    • C. 

      Convergence; hue

    • D. 

      Accommodation; brightness

    • E. 

      Brightness; accommodation

  • 70. 
    Hairs within the utricle and saccule of the vestibular apparatus are embedded in the 
    • A. 

      Macula

    • B. 

      Basilar membrane

    • C. 

      Tectorial membrane

    • D. 

      Tympanic membrane

  • 71. 
    The base of each semicircular canal is known as the 
    • A. 

      Organ of corti

    • B. 

      Cochlea

    • C. 

      Semicircular canals

    • D. 

      Oval window

    • E. 

      Tympanic membrane

    • F. 

      Basilar membrane

    • G. 

      Utricle and saccule

    • H. 

      Ampulla

  • 72. 
    Within the ampulla is the ______ which houses stereocilia that move with endolymph within semicircular canals when you move your head. 
    • A. 

      Organ of corti

    • B. 

      Cochlea

    • C. 

      Oval window

    • D. 

      Tympanic membrane

    • E. 

      Basilar membrane

    • F. 

      Utricle and saccule

    • G. 

      Cupula 

    • H. 

      Tectorial membrane

    • I. 

      Otolithic membrane

    • J. 

      Macula

  • 73. 
    Once olfactory hair cells in the olfactory mucosa/olfactory epithelium transmit signals to ______ under the frontal lobes of the brain, they follow the olfactory tracts (CN 1) to the primary olfactory cortex in the _______. From there, olfactory tracts take the signal to the ____ which overlaps with structures responsible for emotions (amygdala & hypothalamus) and memory (hippocampus) and to the ______ where odors are identified and discriminated.  
    • A. 

      Olfactory bulbs; insula; mid brain

    • B. 

      Olfactory bulbs; temporal lobe; insula; orbitofrontal cortex

    • C. 

      Olfactory bulbs; temporal lobe; mammillary bodies; orbitofrontal cortex

    • D. 

      Olfactory bulbs; temporal lobe; insula; inferior colliculus 

  • 74. 
    _____ muscles on the left cause the pupil to exhibit _________. _______Muscles on the right cause the pupil to exhibit _______. 
    • A. 

      Radial; a sympathetic, dilated response; Circular; a parasympathetic, constriction response

    • B. 

      Circular; a sympathetic, dilated response; Radial; a parasympathetic, constriction response

    • C. 

      Circular; a parasympathetic, constriction response; Radial; a sympathetic, dilated response

    • D. 

      Radial; a parasympathetic, constriction response; Circular; a sympathetic, dilated response;

  • 75. 
    Uvea includes the all of the following except
    • A. 

      Iris

    • B. 

      Choroid layer

    • C. 

      Ciliary body (secretes the transparent liquid (aqueous humor)

    • D. 

      Cornea

  • 76. 
    Failure of meibomian glands (oil) to properly secrete and drain results in a ____, found in red bumps along the ____.  
    • A. 

      Blocked lacrimal gland (tears); caruncle

    • B. 

      Glaucoma; scleral venous sinus

    • C. 

      Keratitis; cornea

    • D. 

      Conjunctivitis (pink eye), palpebral conjuctiva/sac

    • E. 

      Stye; eyelid

  • 77. 
    ________ stroke happens when a blood vessel breaks and bleeds into the brain. Within minutes, brain cells begin to die. 
    • A. 

      Vascular

    • B. 

      Ischemic

    • C. 

      Stenosis 

    • D. 

      Hemorrhagic

  • 78. 
    ________ stoke is usually caused by a blood clot that blocks or plugs a blood vessel in the brain. This keeps blood from flowing to the brain. Within minutes, brain cells begin to die.
    • A. 

      Vascular

    • B. 

      Ischemic

    • C. 

      Stenosis 

    • D. 

      Hemorrhagic

  • 79. 
    ________ stroke is caused by the narrowing of the artery. This can happen because of atherosclerosis, a disease in which plaque builds up. 
    • A. 

      Vascular

    • B. 

      Ischemic

    • C. 

      Stenosis 

    • D. 

      Hemorrhagic

  • 80. 
    Sensory tunic includes the
    • A. 

      Iris

    • B. 

      Choroid layer

    • C. 

      Ciliary body (secretes the transparent liquid (aqueous humor)

    • D. 

      Cornea

    • E. 

      Vitrious humor

    • F. 

      Retina

  • 81. 
    Fibrous tunic includes the
    • A. 

      Iris

    • B. 

      Choroid layer

    • C. 

      Ciliary body (secretes the transparent liquid (aqueous humor)

    • D. 

      Cornea and sclera

    • E. 

      Vitrious humor

    • F. 

      Retina

  • 82. 
    Taste bud types include the following except
    • A. 

      Sour (acidic)

    • B. 

      Salty (hydrogen)

    • C. 

      Dank (THC)

    • D. 

      Sweet (carb/monosarccharides)

    • E. 

      Bitter (alkaloids)

    • F. 

      Umami (amino acids)

  • 83. 
    In order to determine your near point of vision you would...
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 84. 
    In order to determine if one has sustained retinal damage, degenerative optic nerve damage or even arteriosclerosis or diabetes, you could...
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 85. 
    In order to determine if if one is color blind, you could
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 86. 
    In order to test depth perception & binocular vision, you could...
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane (diff distance) and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 87. 
    In order to test astigmatism, you could...
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 88. 
    In order to test visual acuity, you could...
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 89. 
    In order to demonstrate one's blind spot you would...
    • A. 

      Compare left and right eye's ability to read a clock-like chart to see if any lines are blurred. 

    • B. 

      Compare left and right eye's ability to read each line of Snellen Eye chart. 20/20 is normal. 

    • C. 

      Stare an two points on a piece of paper with one eye closed until the contralateral object disappears. 

    • D. 

      Hold an object arm's length away and slowly bring it towards your face until it become distorted. 

    • E. 

      Assess your ability to read numbers on Ishihara plates in bright light

    • F. 

      Hold two objects in same plane and compare left and right eye. Then try to match objects with only one eye open vs two. 

    • G. 

      Examine the eyes with an ophthalmoscope to assess myopia (convex +1) or hyperopia (concave -1). 

  • 90. 
    In order to test auditory acuity, you would...
    • A. 

      Cover each ear and start with a stimulus (eg...ticking clock) on unpacked ear and slowly move away until it can no longer be heard. Compare distance of ears for acuity. 

    • B. 

      Cover both eyes and move stimulus around subject and see if they can detect location of stimulus (front, back, left, right). 

    • C. 

      Strike three forks of varying frequencies at separate times in each ear and see if subject can hear them all. 

    • D. 

      Strike a tuning fork and place medially in front of subject's head. Is fork louder in one ear than the other? 

    • E. 

      Strike tuning fork and place on mastoid process for each ear. Once sound is no longer audible, place on external acoustic meatus for air. If heard again, hearing is not impaired. Then reverse order for bone. 

  • 91. 
    In order to test sound localization, you would...
    • A. 

      Cover each ear and start with a stimulus (eg...ticking clock) on unpacked ear and slowly move away until it can no longer be heard. Compare distance of ears for acuity. 

    • B. 

      Cover both eyes and move stimulus around subject and see if they can detect location of stimulus (front, back, left, right). 

    • C. 

      Strike three forks of varying frequencies at separate times in each ear and see if subject can hear them all. 

    • D. 

      Strike a tuning fork and place medially in front of subject's head. Is fork louder in one ear than the other? 

    • E. 

      Strike tuning fork and place on mastoid process for each ear. Once sound is no longer audible, place on external acoustic meatus for air. If heard again, hearing is not impaired. Then reverse order for bone. 

  • 92. 
    In order to test frequency range of hearing, you would...
    • A. 

      Cover each ear and start with a stimulus (eg...ticking clock) on unpacked ear and slowly move away until it can no longer be heard. Compare distance of ears for acuity. 

    • B. 

      Cover both eyes and move stimulus around subject and see if they can detect location of stimulus (front, back, left, right). 

    • C. 

      Strike three forks of varying frequencies at separate times in each ear and see if subject can hear them all. 

    • D. 

      Strike a tuning fork and place medially in front of subject's head. Is fork louder in one ear than the other? 

    • E. 

      Strike tuning fork and place on mastoid process for each ear. Once sound is no longer audible, place on external acoustic meatus for air. If heard again, hearing is not impaired. Then reverse order for bone. 

  • 93. 
    In order to determine conduction and sensorineural deafness, you would conduct a Weber test. First...
    • A. 

      Cover each ear and start with a stimulus (eg...ticking clock) on unpacked ear and slowly move away until it can no longer be heard. Compare distance of ears for acuity. 

    • B. 

      Cover both eyes and move stimulus around subject and see if they can detect location of stimulus (front, back, left, right). 

    • C. 

      Strike three forks of varying frequencies at separate times in each ear and see if subject can hear them all. 

    • D. 

      Strike a tuning fork and place medially in front of subject's head. Is fork louder in one ear than the other? 

    • E. 

      Strike tuning fork and place on mastoid process for each ear. Once sound is no longer audible, place on external acoustic meatus for air. If heard again, hearing is not impaired. Then reverse order for bone. 

  • 94. 
    In order to determine air and bone conduction, you would conduct a Rinne test. First...
    • A. 

      Cover each ear and start with a stimulus (eg...ticking clock) on unpacked ear and slowly move away until it can no longer be heard. Compare distance of ears for acuity. 

    • B. 

      Cover both eyes and move stimulus around subject and see if they can detect location of stimulus (front, back, left, right). 

    • C. 

      Strike three forks of varying frequencies at separate times in each ear and see if subject can hear them all. 

    • D. 

      Strike a tuning fork and place medially in front of subject's head. Is fork louder in one ear than the other? 

    • E. 

      Strike tuning fork and place on mastoid process for each ear. Once sound is no longer audible, place on external acoustic meatus for air. If heard again, hearing is not impaired. Then reverse order for bone.