# Precalc Unit2a

15 Questions  Settings  Pretest 01

Related Topics
• 1.
Simplify the following expression:
• A.

-(3x + 8)//7

• B.

2 + 3x/5

• C.

(3x + 10)/15

• D.

(3x + 10)/45

• E.

• 2.
Which of the following is the solution set for for the equation |5x - 3| = 22 (|...| denotes absolute value).
• A.

{25}

• B.

{25, -19}

• C.

{5, -3.8}

• D.

{5}

• E.

• 3.
• A.

{ -1, 3}

• B.

{ -3, 1}

• C.

{-1, 0, 3}

• D.

• E.

{-3, 0, 1}

• 4.
• A.

• B.

{x| x > -3}

• C.

{x| x ╪ -3}

• D.

{x| x ≥ -3}

• E.

{x| x ╪ 3}

• 5.
Determine the slope-intercept form of the equation of the straight line with slope 2 and containing the point (-4, -4)
• A.

Y = 2x + 4

• B.

Y = -2x - 4

• C.

Y = 2x - 4

• D.

Y = -2x +4

• E.

• 6.
Given the piecewise-defined function:          { 3 if x > 2 f(x) = {          { x2 + 3 if x < 2 Give the domain and range of f.
• A.

Domain: {x | x ╪ 2}; Range {y | y ≥ 3}

• B.

Domain: {x | x ╪ 2}; Range {y | y > 3}

• C.

Domain: {x | x > 2}; Range {y | y ≥ 3}

• D.

Domain: {x | x > 2}; Range {y | y < 3}

• E.

• 7.
• 8.
Compute the discriminant (  ) of the quadratic equation
• 9.
Find the slope of the line passing through the points (-1, -2) and (11, 5). (Give your ans to one place of dec.)
• 10.
Given the functions f(x) = 1/x and g(x) = √x, determine which of the following evaluations is the smallest. (Select one answer only)
• A.

(f+g)(1/4)

• B.

(f/g)(1/4)

• C.

F(g(1/4))

• D.

(f - g)(1/4)

• E.

• 11.
For two functions f and g to be inverses of each other, what two conditions must be met. (Select TWO answers only.)
• A.

F(g(x)) = g(f(x)) = x

• B.

F(g(x)) = g(f(x))

• C.

F and g must be 1-1 functions

• D.

(fg)(x) = x

• E.

F(x) = 1/g(x) and vice-versa

• 12.
• A.

• B.

{x| x > -5}

• C.

{x| x ╪ -5}

• D.

{x| x ≥ -3}

• E.

{x| x ╪ 5}

• 13.
Find the slope-intercept form of the equation of the straight line that is perpendicular to the  line  4x - y = 4 and that passes through the point (0, 1)
• A.

Y = -x/4 + 1

• B.

Y = -x/4 + 4

• C.

Y = -x + 4

• D.

Y = x/4 + 1

• E.

• 14.
Simplify (logb10) / (log10b) A. 2 (logb10)  B.  1/[(log10b)(log10b)] C. (logb10) (log10b) D.  2(log10b)
• A.

A

• B.

B

• C.

C

• D.

D

• E.

• 15.
Determine the difference quotient [f(x+h) - f(x)]/h for the function: f(x) = x2 - x
• A.

2x- 1

• B.

2x - 1 + h

• C.

(2x - 1)/h

• D.

H -1

• E.