Do You Know About Semi-invariant Of A Quiver?

10 Questions | Total Attempts: 18

SettingsSettingsSettings
Please wait...
Do You Know About Semi-invariant Of A Quiver?

The semi-invariant of a quiver is an invariant up to a character of a group, in which such activity incites one on the ring of capacities and functions. It shapes a ring whose structure reflects portrayal-hypothetical or representation-theoretical properties of the quiver. To know more about the semi-invariant of a quiver, take this short, intelligent quiz.


Questions and Answers
  • 1. 
    What does s(α) represent?
    • A. 

      The starting vertices of α

    • B. 

      The ending vertices of α

    • C. 

      The vertices positioned in the middle

    • D. 

      Vertices range

  • 2. 
    What does t(α) represent?
    • A. 

      The starting vertices of α

    • B. 

      The ending vertices of α

    • C. 

      The vertices positioned in the middle

    • D. 

      Vertices range

  • 3. 
    What do we call the quivers of finite representation-type? 
    • A. 

      Dynkin quivers

    • B. 

      Dawkin quivers

    • C. 

      Drury quivers

    • D. 

      Kyrk quivers

  • 4. 
    What does K represent?
    • A. 

      Scalar space

    • B. 

      Invariable space

    • C. 

      Open space

    • D. 

      Vector space

  • 5. 
    Which of these is used to represent a quiver? 
    • A. 

      Matrices

    • B. 

      Algebra

    • C. 

      Inequality

    • D. 

      Fractions

  • 6. 
    What does R(α) represent?
    • A. 

      Reeholf number

    • B. 

      Raynold number

    • C. 

      Representation space

    • D. 

      Reto space

  • 7. 
    Why do we refer them as semi-invariants?
    • A. 

      Invariants are lesser than the character of a group

    • B. 

      Invariants are up to the character of a group

    • C. 

      Invariants are half of the character of a group

    • D. 

      Invariants are greater than the character of a group

  • 8. 
    Which form of shape do they represent? 
    • A. 

      Rectangular shapes

    • B. 

      Ring shapes

    • C. 

      Circular structures

    • D. 

      Conical forms

  • 9. 
    In case Q has neither loops nor cycles, what happens to the invariant function? 
    • A. 

      It develops to a higher value

    • B. 

      It remains constant

    • C. 

      It decomposes to a lesser value

    • D. 

      It distorts the whole process

  • 10. 
    What do we call a function belonging to SI (Q, d) σ?
    • A. 

      Semi-invariant of weight σ

    • B. 

      Semi-invariant of vector σ

    • C. 

      Semi-invariant of representation Q

    • D. 

      Semi-invariant of dysfunctional function d

Back to Top Back to top