We have sent an email with your new password.


Basic Concepts Of Permutations And Combinations

20 Questions  I  By Sweetsalman123
Basic Concepts Of Permutations And Combinations

  
Changes are done, please start the quiz.


Question Excerpt

Removing question excerpt is a premium feature

Upgrade and get a lot more done!
1.  Eight guests have to be seated 4 on each side of a long rectangular table. 2 particular guests desire to sit on one side of the table and 3 on the other side. The number of ways in which the sitting arrangements can be made is
A.
B.
C.
D.
2.  Mr. X and Mr. Y enter into a railway compartment having six vacant seats. The number of ways in which they can occupy the seats is
A.
B.
C.
D.
3.  «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»n«/mi»«msub»«mi»C«/mi»«mn»1«/mn»«/msub»«/msub»«mo»+«/mo»«msub»«mi»n«/mi»«msub»«mi»c«/mi»«mn»2«/mn»«/msub»«/msub»«mo»+«/mo»«msub»«mi»n«/mi»«msub»«mi»c«/mi»«mn»3«/mn»«/msub»«/msub»«mo»+«/mo»«msub»«mi»n«/mi»«msub»«mi»c«/mi»«mn»4«/mn»«/msub»«/msub»«mo»+«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo».«/mo»«mo»+«/mo»«mi»e«/mi»«mi»q«/mi»«mi»u«/mi»«mi»a«/mi»«mi»l«/mi»«mi»s«/mi»«/math» Options: A.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mn»2«/mn»«mi»n«/mi»«/msup»«mo»-«/mo»«mn»1«/mn»«/math» B.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mn»2«/mn»«mi»n«/mi»«/msup»«/math» C.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mn»2«/mn»«mi»n«/mi»«/msup»«mo»+«/mo»«mn»1«/mn»«/math» D.None of these
A.
B.
C.
D.
4.  The total number of 9 digits numbers of different digits is
A.
B.
C.
D.
5.  In a group of boys the number of arrangement of 4 boys is 12 times the number of arrangements of 2 boys.The number boys in the group is
A.
B.
C.
D.
6.  The number of 4 digit numbers formed with the digits 1, 1, 2, 2, 3, 4 is
A.
B.
C.
D.
7.  The Supreme Court has given a 6 to 3 decision upholding a lower court; the number of mays it can give a majority decision reversing the lower court is
A.
B.
C.
D.
8.  5 persons are sitting in a round table in such way that Tallest Person is always on the right- side of the shortest person; the number of such arrangements is
A.
B.
C.
D.
9.  The number of words that can be made by rearranging the letters of the word APURNA so that vowels and consonants appear alternate is
A.
B.
C.
D.
10.  If 50 different jewels can be set to form a necklace then the number of ways is Options: A.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mn»50«/mn»«mo»!«/mo»«/math» B.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mn»49«/mn»«mo»!«/mo»«/math» C.49! D.None of these
A.
B.
C.
D.
11.  If . nP3: nP2 =3:1, then n is equal to
A.
B.
C.
D.
12.  There are 10 trains plying between Calcutta and Delhi. The number of ways in which a person can go from Calcutta to Delhi and return by a different train is 
A.
B.
C.
D.
13.  The number of ways the letters of the word COMPUTER can be rearranged is
A.
B.
C.
D.
14.  The number of ways in which 8 different beads be strung on a necklace is
A.
B.
C.
D.
15.  «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«msub»«mn»51«/mn»«mi»c«/mi»«/msub»«mn»31«/mn»«/msub»«/math» is equal to Options: A.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«msub»«mn»51«/mn»«mi»c«/mi»«/msub»«mn»20«/mn»«/msub»«/math» B.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»2«/mn»«mo».«/mo»«msub»«msub»«mn»50«/mn»«mi»c«/mi»«/msub»«mn»20«/mn»«/msub»«/math» C.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»2«/mn»«mo».«/mo»«msub»«msub»«mn»45«/mn»«mi»c«/mi»«/msub»«mn»15«/mn»«/msub»«/math» D.None of these
A.
B.
C.
D.
16.  The number of arrangements of 10 different things taken 4 at a time in which one particular thing always occurs is
A.
B.
C.
D.
17.  The number of ways in which 12 students can be equally divided into three groups is 
A.
B.
C.
D.
18.  3 ladies and 3 gents can be seated at a round table so that any two and only two of the ladies sit together. The number of ways is
A.
B.
C.
D.
19.  The value of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«munderover»«mrow»«mo»§#8721;«/mo»«mi»r«/mi»«mo».«/mo»«/mrow»«mrow»«mi»r«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«mn»10«/mn»«/munderover»«/math»«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»r«/mi»«msub»«mi»p«/mi»«mi»r«/mi»«/msub»«/msub»«/math» Options: A.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«msub»«mn»11«/mn»«mi»P«/mi»«/msub»«mn»11«/mn»«/msub»«/math» B.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«msub»«mn»11«/mn»«mi»P«/mi»«/msub»«mn»11«/mn»«/msub»«/math»-1 C.«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«msub»«mn»11«/mn»«mi»P«/mi»«/msub»«mn»11«/mn»«/msub»«/math»+1 D.None of these
A.
B.
C.
D.
20.  N articles are arranged in such a way that 2 particular articles never come together. The number of such arrangements is
A.
B.
C.
D.
Back to top

Removing ad is a premium feature

Upgrade and get a lot more done!
Take Another Quiz